ybelkada's picture
Fix map_location issue
d8ca1f3
import json
import shutil
import gc
import gradio as gr
import torch
import safetensors
# hack to load safetensors.torch
from safetensors.torch import save_file
from huggingface_hub import hf_hub_download
def check_simple_file(st_weights_path, torch_weights_path):
st_weights = safetensors.torch.load_file(st_weights_path)
torch_weights = torch.load(torch_weights_path, map_location=torch.device('cpu'))
# check if keys are the same
if st_weights.keys() != torch_weights.keys():
# retrieve different keys
unexpected_keys = st_weights.keys() - torch_weights.keys()
return f"keys are not the same ! Conversion failed - unexpected keys are: {unexpected_keys} for the file {st_weights_path}"
total_errors = []
# check all weights are same
for key, value in st_weights.items():
# this automatically asserts that the weights are same and raises error if not
try:
torch.testing.assert_close(torch_weights[key], value, rtol=1e-5, atol=1e-5)
except Exception as e:
total_errors.append(e)
del st_weights
del torch_weights
gc.collect()
return total_errors
def run(pr_number, model_id):
is_sharded = False
try:
st_sharded_index_file = hf_hub_download(repo_id=model_id, filename="model.safetensors.index.json", revision=f"refs/pr/{pr_number}")
torch_sharded_index_file = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json")
is_sharded = True
except:
pass
if not is_sharded:
try:
st_weights_path = hf_hub_download(repo_id=model_id, filename="model.safetensors", revision=f"refs/pr/{pr_number}")
torch_weights_path = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
except Exception as e:
return f"Error: {e} | \n Maybe you specified model ids or PRs that does not exist or does not contain any `model.safetensors` or `pytorch_model.bin` files"
total_errors = check_simple_file(st_weights_path, torch_weights_path)
else:
total_errors = []
total_st_files = set(json.load(open(st_sharded_index_file, "r"))["weight_map"].values())
total_pt_files = set(json.load(open(torch_sharded_index_file, "r"))["weight_map"].values())
if len(total_st_files) != len(total_pt_files):
return f"weights are not the same there are {len(total_st_files)} files in safetensors and {len(total_pt_files)} files in torch ! Conversion failed - {len(total_errors)} errors : {total_errors}"
# check if the mapping are correct
if not all([pt_file.replace("pytorch_model", "model").replace(".bin", ".safetensors") in total_st_files for pt_file in total_pt_files]):
return f"Conversion failed! Safetensors files are not the same as torch files - make sure you have the correct files in the PR"
for pt_file in total_pt_files:
st_file = pt_file.replace("pytorch_model", "model").replace(".bin", ".safetensors")
st_weights_path = hf_hub_download(repo_id=model_id, filename=st_file, revision=f"refs/pr/{pr_number}")
torch_weights_path = hf_hub_download(repo_id=model_id, filename=pt_file)
total_errors += check_simple_file(st_weights_path, torch_weights_path)
# remove files for memory optimization
shutil.rmtree(st_weights_path)
shutil.rmtree(torch_weights_path)
if len(total_errors) > 0:
return f"weights are not the same ! Conversion failed - {len(total_errors)} errors : {total_errors}"
return "Safetensors and torch weights are the same! Conversion sucessfull - you can safely merge the PR"
DESCRIPTION = """
The steps are the following:
- You got tagged in a Safetensors PR? Check if it works!
- Identify the PR number that you want to check.
- Paste the model id and the PR number below
- Click "Submit"
- That's it! You'll get feedback if the user successfully converted a model in `safetensors` format or not!
This checker also support sharded weights.
"""
demo = gr.Interface(
title="SafeTensors Checker",
description=DESCRIPTION,
allow_flagging="never",
article="Check out the [Safetensors repo on GitHub](https://github.com/huggingface/safetensors)",
inputs=[
gr.Text(max_lines=1, label="PR number"),
gr.Text(max_lines=1, label="model_id"),
],
outputs=[gr.Markdown(label="output")],
fn=run,
).queue()
demo.launch()