safi842's picture
Files for the app
29cdbe6
'''
A simple tool to generate sample of output of a GAN,
and apply semantic segmentation on the output.
'''
import torch, numpy, os, argparse, sys, shutil
from PIL import Image
from torch.utils.data import TensorDataset
from netdissect.zdataset import standard_z_sample, z_dataset_for_model
from netdissect.progress import default_progress, verbose_progress
from netdissect.autoeval import autoimport_eval
from netdissect.workerpool import WorkerBase, WorkerPool
from netdissect.nethook import edit_layers, retain_layers
from netdissect.segviz import segment_visualization
from netdissect.segmenter import UnifiedParsingSegmenter
from scipy.io import savemat
def main():
parser = argparse.ArgumentParser(description='GAN output segmentation util')
parser.add_argument('--model', type=str, default=
'netdissect.proggan.from_pth_file("' +
'models/karras/churchoutdoor_lsun.pth")',
help='constructor for the model to test')
parser.add_argument('--outdir', type=str, default='images',
help='directory for image output')
parser.add_argument('--size', type=int, default=100,
help='number of images to output')
parser.add_argument('--seed', type=int, default=1,
help='seed')
parser.add_argument('--quiet', action='store_true', default=False,
help='silences console output')
#if len(sys.argv) == 1:
# parser.print_usage(sys.stderr)
# sys.exit(1)
args = parser.parse_args()
verbose_progress(not args.quiet)
# Instantiate the model
model = autoimport_eval(args.model)
# Make the standard z
z_dataset = z_dataset_for_model(model, size=args.size)
# Make the segmenter
segmenter = UnifiedParsingSegmenter()
# Write out text labels
labels, cats = segmenter.get_label_and_category_names()
with open(os.path.join(args.outdir, 'labels.txt'), 'w') as f:
for i, (label, cat) in enumerate(labels):
f.write('%s %s\n' % (label, cat))
# Move models to cuda
model.cuda()
batch_size = 10
progress = default_progress()
dirname = args.outdir
with torch.no_grad():
# Pass 2: now generate images
z_loader = torch.utils.data.DataLoader(z_dataset,
batch_size=batch_size, num_workers=2,
pin_memory=True)
for batch_num, [z] in enumerate(progress(z_loader,
desc='Saving images')):
z = z.cuda()
start_index = batch_num * batch_size
tensor_im = model(z)
byte_im = ((tensor_im + 1) / 2 * 255).clamp(0, 255).byte().permute(
0, 2, 3, 1).cpu()
seg = segmenter.segment_batch(tensor_im)
for i in range(len(tensor_im)):
index = i + start_index
filename = os.path.join(dirname, '%d_img.jpg' % index)
Image.fromarray(byte_im[i].numpy()).save(
filename, optimize=True, quality=100)
filename = os.path.join(dirname, '%d_seg.mat' % index)
savemat(filename, dict(seg=seg[i].cpu().numpy()))
filename = os.path.join(dirname, '%d_seg.png' % index)
Image.fromarray(segment_visualization(seg[i].cpu().numpy(),
tensor_im.shape[2:])).save(filename)
srcdir = os.path.realpath(
os.path.join(os.getcwd(), os.path.dirname(__file__)))
shutil.copy(os.path.join(srcdir, 'lightbox.html'),
os.path.join(dirname, '+lightbox.html'))
if __name__ == '__main__':
main()