Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Load model and tokenizer
|
8 |
+
model_name = "mistral-community/pixtral-12b-240910"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_name,
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
device_map="auto"
|
14 |
+
)
|
15 |
+
|
16 |
+
@spaces.GPU(duration=120)
|
17 |
+
def generate_response(image, prompt, max_length, temperature):
|
18 |
+
messages = [
|
19 |
+
{"role": "system", "content": "You are a helpful assistant that can analyze images and text."},
|
20 |
+
{"role": "user", "content": prompt}
|
21 |
+
]
|
22 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
23 |
+
|
24 |
+
# Preprocess the image
|
25 |
+
if image is not None:
|
26 |
+
image = Image.open(image).convert("RGB")
|
27 |
+
inputs = tokenizer(formatted_prompt, images=[image], return_tensors="pt", padding=True).to(model.device)
|
28 |
+
else:
|
29 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt", padding=True).to(model.device)
|
30 |
+
|
31 |
+
# Generate
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model.generate(
|
34 |
+
**inputs,
|
35 |
+
max_new_tokens=max_length,
|
36 |
+
do_sample=True,
|
37 |
+
temperature=temperature,
|
38 |
+
top_k=100,
|
39 |
+
top_p=0.95,
|
40 |
+
)
|
41 |
+
|
42 |
+
# Decode and return the response
|
43 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
44 |
+
return response
|
45 |
+
|
46 |
+
# Custom CSS
|
47 |
+
css = """
|
48 |
+
body {
|
49 |
+
background-color: #1a1a2e;
|
50 |
+
color: #e0e0e0;
|
51 |
+
font-family: 'Arial', sans-serif;
|
52 |
+
}
|
53 |
+
.container {
|
54 |
+
max-width: 900px;
|
55 |
+
margin: auto;
|
56 |
+
padding: 20px;
|
57 |
+
}
|
58 |
+
.gradio-container {
|
59 |
+
background-color: #16213e;
|
60 |
+
border-radius: 15px;
|
61 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
62 |
+
}
|
63 |
+
.header {
|
64 |
+
background-color: #0f3460;
|
65 |
+
padding: 20px;
|
66 |
+
border-radius: 15px 15px 0 0;
|
67 |
+
text-align: center;
|
68 |
+
margin-bottom: 20px;
|
69 |
+
}
|
70 |
+
.header h1 {
|
71 |
+
color: #e94560;
|
72 |
+
font-size: 2.5em;
|
73 |
+
margin-bottom: 10px;
|
74 |
+
}
|
75 |
+
.header p {
|
76 |
+
color: #a0a0a0;
|
77 |
+
}
|
78 |
+
.input-group, .output-group {
|
79 |
+
background-color: #1a1a2e;
|
80 |
+
padding: 20px;
|
81 |
+
border-radius: 10px;
|
82 |
+
margin-bottom: 20px;
|
83 |
+
}
|
84 |
+
.input-group label, .output-group label {
|
85 |
+
color: #e94560;
|
86 |
+
font-weight: bold;
|
87 |
+
}
|
88 |
+
.generate-btn {
|
89 |
+
background-color: #e94560 !important;
|
90 |
+
color: white !important;
|
91 |
+
border: none !important;
|
92 |
+
border-radius: 5px !important;
|
93 |
+
padding: 10px 20px !important;
|
94 |
+
font-size: 16px !important;
|
95 |
+
cursor: pointer !important;
|
96 |
+
transition: background-color 0.3s ease !important;
|
97 |
+
}
|
98 |
+
.generate-btn:hover {
|
99 |
+
background-color: #c81e45 !important;
|
100 |
+
}
|
101 |
+
.example-prompts {
|
102 |
+
background-color: #1f2b47;
|
103 |
+
padding: 15px;
|
104 |
+
border-radius: 10px;
|
105 |
+
margin-bottom: 20px;
|
106 |
+
}
|
107 |
+
.example-prompts h3 {
|
108 |
+
color: #e94560;
|
109 |
+
margin-bottom: 10px;
|
110 |
+
}
|
111 |
+
.example-prompts ul {
|
112 |
+
list-style-type: none;
|
113 |
+
padding-left: 0;
|
114 |
+
}
|
115 |
+
.example-prompts li {
|
116 |
+
margin-bottom: 5px;
|
117 |
+
cursor: pointer;
|
118 |
+
transition: color 0.3s ease;
|
119 |
+
}
|
120 |
+
.example-prompts li:hover {
|
121 |
+
color: #e94560;
|
122 |
+
}
|
123 |
+
"""
|
124 |
+
|
125 |
+
# Example prompts
|
126 |
+
example_prompts = [
|
127 |
+
"Describe this image in detail.",
|
128 |
+
"What emotions does this image evoke?",
|
129 |
+
"Imagine a story based on this image.",
|
130 |
+
"What technical aspects of photography are demonstrated in this image?",
|
131 |
+
"How might this image be used in advertising?"
|
132 |
+
]
|
133 |
+
|
134 |
+
# Gradio interface
|
135 |
+
with gr.Blocks(css=css) as iface:
|
136 |
+
gr.HTML(
|
137 |
+
"""
|
138 |
+
<div class="header">
|
139 |
+
<h1>Pixtral-12B Multimodal Generation</h1>
|
140 |
+
<p>Generate text responses based on images and prompts using the powerful Pixtral-12B model.</p>
|
141 |
+
</div>
|
142 |
+
"""
|
143 |
+
)
|
144 |
+
|
145 |
+
with gr.Group():
|
146 |
+
with gr.Group(elem_classes="example-prompts"):
|
147 |
+
gr.HTML("<h3>Example Prompts:</h3>")
|
148 |
+
example_buttons = [gr.Button(prompt) for prompt in example_prompts]
|
149 |
+
|
150 |
+
with gr.Group(elem_classes="input-group"):
|
151 |
+
image_input = gr.Image(type="filepath", label="Upload an image (optional)")
|
152 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=5)
|
153 |
+
max_length = gr.Slider(minimum=1, maximum=500, value=128, step=1, label="Max Length")
|
154 |
+
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
155 |
+
generate_btn = gr.Button("Generate", elem_classes="generate-btn")
|
156 |
+
|
157 |
+
with gr.Group(elem_classes="output-group"):
|
158 |
+
output = gr.Textbox(label="Generated Text", lines=10)
|
159 |
+
|
160 |
+
generate_btn.click(generate_response, inputs=[image_input, prompt, max_length, temperature], outputs=output)
|
161 |
+
|
162 |
+
# Set up example prompt buttons
|
163 |
+
for button in example_buttons:
|
164 |
+
button.click(lambda x: x, inputs=[button], outputs=[prompt])
|
165 |
+
|
166 |
+
# Launch the app
|
167 |
+
iface.launch()
|