Spaces:
Paused
Paused
saicharan1234
commited on
Commit
•
6145eb5
1
Parent(s):
12d6a3e
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
+
from fastapi.responses import StreamingResponse
|
3 |
+
import torch
|
4 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, DPMSolverSinglestepScheduler
|
5 |
+
from diffusers.pipelines import StableDiffusionInpaintPipeline, StableDiffusionXLInpaintPipeline
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
import numpy as np
|
8 |
+
import random
|
9 |
+
from PIL import Image
|
10 |
+
import io
|
11 |
+
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
|
16 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
# Load pipelines
|
19 |
+
HF_TOKEN = "your_huggingface_token" # Replace with your actual token
|
20 |
+
pipe_xl_final = StableDiffusionXLPipeline.from_single_file(
|
21 |
+
hf_hub_download(repo_id="fluently/Fluently-XL-Final", filename="FluentlyXL-Final.safetensors", token=HF_TOKEN),
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
use_safetensors=True,
|
24 |
+
)
|
25 |
+
pipe_xl_final.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_xl_final.scheduler.config)
|
26 |
+
pipe_xl_final.to(device)
|
27 |
+
|
28 |
+
pipe_anime = StableDiffusionPipeline.from_pretrained(
|
29 |
+
"fluently/Fluently-anime",
|
30 |
+
torch_dtype=torch.float16,
|
31 |
+
use_safetensors=True,
|
32 |
+
)
|
33 |
+
pipe_anime.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_anime.scheduler.config)
|
34 |
+
pipe_anime.to(device)
|
35 |
+
|
36 |
+
pipe_epic = StableDiffusionPipeline.from_pretrained(
|
37 |
+
"fluently/Fluently-epic",
|
38 |
+
torch_dtype=torch.float16,
|
39 |
+
use_safetensors=True,
|
40 |
+
)
|
41 |
+
pipe_epic.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_epic.scheduler.config)
|
42 |
+
pipe_epic.to(device)
|
43 |
+
|
44 |
+
pipe_xl_inpaint = StableDiffusionXLInpaintPipeline.from_single_file(
|
45 |
+
"https://huggingface.co/fluently/Fluently-XL-v3-inpainting/blob/main/FluentlyXL-v3-inpainting.safetensors",
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
use_safetensors=True,
|
48 |
+
)
|
49 |
+
pipe_xl_inpaint.to(device)
|
50 |
+
|
51 |
+
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
52 |
+
"fluently/Fluently-v4-inpainting",
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
use_safetensors=True,
|
55 |
+
)
|
56 |
+
pipe_inpaint.to(device)
|
57 |
+
|
58 |
+
pipe_xl = StableDiffusionXLPipeline.from_pretrained(
|
59 |
+
"fluently/Fluently-XL-v4",
|
60 |
+
torch_dtype=torch.float16,
|
61 |
+
use_safetensors=True,
|
62 |
+
)
|
63 |
+
pipe_xl.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_xl.scheduler.config)
|
64 |
+
pipe_xl.to(device)
|
65 |
+
|
66 |
+
pipe_xl_lightning = StableDiffusionXLPipeline.from_pretrained(
|
67 |
+
"fluently/Fluently-XL-v3-lightning",
|
68 |
+
torch_dtype=torch.float16,
|
69 |
+
use_safetensors=True,
|
70 |
+
)
|
71 |
+
pipe_xl_lightning.scheduler = DPMSolverSinglestepScheduler.from_config(pipe_xl_lightning.scheduler.config, use_karras_sigmas=False, timestep_spacing="trailing", lower_order_final=True)
|
72 |
+
pipe_xl_lightning.to(device)
|
73 |
+
|
74 |
+
|
75 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
76 |
+
if randomize_seed:
|
77 |
+
seed = random.randint(0, MAX_SEED)
|
78 |
+
return seed
|
79 |
+
|
80 |
+
|
81 |
+
@app.post("/generate")
|
82 |
+
async def generate(
|
83 |
+
model: str = Form(...),
|
84 |
+
prompt: str = Form(...),
|
85 |
+
negative_prompt: str = Form(""),
|
86 |
+
use_negative_prompt: bool = Form(False),
|
87 |
+
seed: int = Form(0),
|
88 |
+
width: int = Form(1024),
|
89 |
+
height: int = Form(1024),
|
90 |
+
guidance_scale: float = Form(3),
|
91 |
+
randomize_seed: bool = Form(False),
|
92 |
+
inpaint_image: UploadFile = File(None),
|
93 |
+
mask_image: UploadFile = File(None),
|
94 |
+
blur_factor: float = Form(1.0),
|
95 |
+
strength: float = Form(0.75)
|
96 |
+
):
|
97 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
98 |
+
|
99 |
+
if not use_negative_prompt:
|
100 |
+
negative_prompt = ""
|
101 |
+
|
102 |
+
inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
|
103 |
+
mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None
|
104 |
+
|
105 |
+
if model == "Fluently XL Final":
|
106 |
+
images = pipe_xl_final(
|
107 |
+
prompt=prompt,
|
108 |
+
negative_prompt=negative_prompt,
|
109 |
+
width=width,
|
110 |
+
height=height,
|
111 |
+
guidance_scale=guidance_scale,
|
112 |
+
num_inference_steps=25,
|
113 |
+
num_images_per_prompt=1,
|
114 |
+
output_type="pil",
|
115 |
+
).images
|
116 |
+
elif model == "Fluently Anime":
|
117 |
+
images = pipe_anime(
|
118 |
+
prompt=prompt,
|
119 |
+
negative_prompt=negative_prompt,
|
120 |
+
width=width,
|
121 |
+
height=height,
|
122 |
+
guidance_scale=guidance_scale,
|
123 |
+
num_inference_steps=30,
|
124 |
+
num_images_per_prompt=1,
|
125 |
+
output_type="pil",
|
126 |
+
).images
|
127 |
+
elif model == "Fluently Epic":
|
128 |
+
images = pipe_epic(
|
129 |
+
prompt=prompt,
|
130 |
+
negative_prompt=negative_prompt,
|
131 |
+
width=width,
|
132 |
+
height=height,
|
133 |
+
guidance_scale=guidance_scale,
|
134 |
+
num_inference_steps=30,
|
135 |
+
num_images_per_prompt=1,
|
136 |
+
output_type="pil",
|
137 |
+
).images
|
138 |
+
elif model == "Fluently XL v4":
|
139 |
+
images = pipe_xl(
|
140 |
+
prompt=prompt,
|
141 |
+
negative_prompt=negative_prompt,
|
142 |
+
width=width,
|
143 |
+
height=height,
|
144 |
+
guidance_scale=guidance_scale,
|
145 |
+
num_inference_steps=25,
|
146 |
+
num_images_per_prompt=1,
|
147 |
+
output_type="pil",
|
148 |
+
).images
|
149 |
+
elif model == "Fluently XL v3 Lightning":
|
150 |
+
images = pipe_xl_lightning(
|
151 |
+
prompt=prompt,
|
152 |
+
negative_prompt=negative_prompt,
|
153 |
+
width=width,
|
154 |
+
height=height,
|
155 |
+
guidance_scale=2,
|
156 |
+
num_inference_steps=5,
|
157 |
+
num_images_per_prompt=1,
|
158 |
+
output_type="pil",
|
159 |
+
).images
|
160 |
+
elif model == "Fluently v4 inpaint" or model == "Fluently XL v3 inpaint":
|
161 |
+
blurred_mask = pipe_inpaint.mask_processor.blur(mask_image_pil, blur_factor=blur_factor)
|
162 |
+
images = pipe_inpaint(
|
163 |
+
prompt=prompt,
|
164 |
+
image=inpaint_image_pil,
|
165 |
+
mask_image=blurred_mask,
|
166 |
+
negative_prompt=negative_prompt,
|
167 |
+
width=width,
|
168 |
+
height=height,
|
169 |
+
guidance_scale=guidance_scale,
|
170 |
+
num_inference_steps=30,
|
171 |
+
strength=strength,
|
172 |
+
num_images_per_prompt=1,
|
173 |
+
output_type="pil",
|
174 |
+
).images
|
175 |
+
|
176 |
+
img = images[0]
|
177 |
+
img_byte_arr = io.BytesIO()
|
178 |
+
img.save(img_byte_arr, format='PNG')
|
179 |
+
img_byte_arr.seek(0)
|
180 |
+
|
181 |
+
return StreamingResponse(img_byte_arr, media_type="image/png")
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
import uvicorn
|
186 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|