Spaces:
Paused
Paused
saicharan1234
commited on
Commit
•
96b5a68
1
Parent(s):
84ec534
Update main.py
Browse files
main.py
CHANGED
@@ -9,6 +9,7 @@ import numpy as np
|
|
9 |
import random
|
10 |
from PIL import Image
|
11 |
import io
|
|
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
@@ -16,91 +17,71 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
16 |
|
17 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
"
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
use_safetensors=True,
|
78 |
-
)
|
79 |
-
model.scheduler = DPMSolverSinglestepScheduler.from_config(model.scheduler.config, use_karras_sigmas=False, timestep_spacing="trailing", lower_order_final=True)
|
80 |
-
elif model_name in ["Fluently v4 inpaint", "Fluently XL v3 inpaint"]:
|
81 |
-
if model_name == "Fluently v4 inpaint":
|
82 |
-
model = StableDiffusionInpaintPipeline.from_pretrained(
|
83 |
-
paths[model_name],
|
84 |
-
torch_dtype=torch.float16,
|
85 |
-
use_safetensors=True,
|
86 |
-
)
|
87 |
-
else:
|
88 |
-
model = StableDiffusionXLInpaintPipeline.from_single_file(
|
89 |
-
paths[model_name],
|
90 |
-
torch_dtype=torch.float16,
|
91 |
-
use_safetensors=True,
|
92 |
-
)
|
93 |
-
else:
|
94 |
-
raise ValueError(f"Model {model_name} not found")
|
95 |
-
|
96 |
-
model.to(device)
|
97 |
-
return model
|
98 |
|
99 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
100 |
if randomize_seed:
|
101 |
seed = random.randint(0, MAX_SEED)
|
102 |
return seed
|
103 |
|
|
|
104 |
@app.post("/generate")
|
105 |
async def generate(
|
106 |
model: str = Form(...),
|
@@ -125,10 +106,8 @@ async def generate(
|
|
125 |
inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
|
126 |
mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None
|
127 |
|
128 |
-
model_pipeline = load_model(model)
|
129 |
-
|
130 |
if model == "Fluently XL Final":
|
131 |
-
images =
|
132 |
prompt=prompt,
|
133 |
negative_prompt=negative_prompt,
|
134 |
width=width,
|
@@ -139,7 +118,7 @@ async def generate(
|
|
139 |
output_type="pil",
|
140 |
).images
|
141 |
elif model == "Fluently Anime":
|
142 |
-
images =
|
143 |
prompt=prompt,
|
144 |
negative_prompt=negative_prompt,
|
145 |
width=width,
|
@@ -150,7 +129,7 @@ async def generate(
|
|
150 |
output_type="pil",
|
151 |
).images
|
152 |
elif model == "Fluently Epic":
|
153 |
-
images =
|
154 |
prompt=prompt,
|
155 |
negative_prompt=negative_prompt,
|
156 |
width=width,
|
@@ -161,7 +140,7 @@ async def generate(
|
|
161 |
output_type="pil",
|
162 |
).images
|
163 |
elif model == "Fluently XL v4":
|
164 |
-
images =
|
165 |
prompt=prompt,
|
166 |
negative_prompt=negative_prompt,
|
167 |
width=width,
|
@@ -172,7 +151,7 @@ async def generate(
|
|
172 |
output_type="pil",
|
173 |
).images
|
174 |
elif model == "Fluently XL v3 Lightning":
|
175 |
-
images =
|
176 |
prompt=prompt,
|
177 |
negative_prompt=negative_prompt,
|
178 |
width=width,
|
@@ -183,8 +162,8 @@ async def generate(
|
|
183 |
output_type="pil",
|
184 |
).images
|
185 |
elif model == "Fluently v4 inpaint" or model == "Fluently XL v3 inpaint":
|
186 |
-
blurred_mask =
|
187 |
-
images =
|
188 |
prompt=prompt,
|
189 |
image=inpaint_image_pil,
|
190 |
mask_image=blurred_mask,
|
@@ -198,10 +177,6 @@ async def generate(
|
|
198 |
output_type="pil",
|
199 |
).images
|
200 |
|
201 |
-
# Unload the model from the device
|
202 |
-
model_pipeline.to("cpu")
|
203 |
-
torch.cuda.empty_cache()
|
204 |
-
|
205 |
img = images[0]
|
206 |
img_byte_arr = io.BytesIO()
|
207 |
img.save(img_byte_arr, format='PNG')
|
|
|
9 |
import random
|
10 |
from PIL import Image
|
11 |
import io
|
12 |
+
import os
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
|
|
17 |
|
18 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
19 |
|
20 |
+
# Load HF token from environment variable
|
21 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
22 |
+
|
23 |
+
# Load pipelines
|
24 |
+
pipe_xl_final = StableDiffusionXLPipeline.from_single_file(
|
25 |
+
hf_hub_download(repo_id="fluently/Fluently-XL-Final", filename="FluentlyXL-Final.safetensors", token=HF_TOKEN),
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
use_safetensors=True,
|
28 |
+
)
|
29 |
+
pipe_xl_final.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_xl_final.scheduler.config)
|
30 |
+
pipe_xl_final.to(device)
|
31 |
+
|
32 |
+
pipe_anime = StableDiffusionPipeline.from_pretrained(
|
33 |
+
"fluently/Fluently-anime",
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
use_safetensors=True,
|
36 |
+
)
|
37 |
+
pipe_anime.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_anime.scheduler.config)
|
38 |
+
pipe_anime.to(device)
|
39 |
+
|
40 |
+
pipe_epic = StableDiffusionPipeline.from_pretrained(
|
41 |
+
"fluently/Fluently-epic",
|
42 |
+
torch_dtype=torch.float16,
|
43 |
+
use_safetensors=True,
|
44 |
+
)
|
45 |
+
pipe_epic.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_epic.scheduler.config)
|
46 |
+
pipe_epic.to(device)
|
47 |
+
|
48 |
+
pipe_xl_inpaint = StableDiffusionXLInpaintPipeline.from_single_file(
|
49 |
+
"https://huggingface.co/fluently/Fluently-XL-v3-inpainting/blob/main/FluentlyXL-v3-inpainting.safetensors",
|
50 |
+
torch_dtype=torch.float16,
|
51 |
+
use_safetensors=True,
|
52 |
+
)
|
53 |
+
pipe_xl_inpaint.to(device)
|
54 |
+
|
55 |
+
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
56 |
+
"fluently/Fluently-v4-inpainting",
|
57 |
+
torch_dtype=torch.float16,
|
58 |
+
use_safetensors=True,
|
59 |
+
)
|
60 |
+
pipe_inpaint.to(device)
|
61 |
+
|
62 |
+
pipe_xl = StableDiffusionXLPipeline.from_pretrained(
|
63 |
+
"fluently/Fluently-XL-v4",
|
64 |
+
torch_dtype=torch.float16,
|
65 |
+
use_safetensors=True,
|
66 |
+
)
|
67 |
+
pipe_xl.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_xl.scheduler.config)
|
68 |
+
pipe_xl.to(device)
|
69 |
+
|
70 |
+
pipe_xl_lightning = StableDiffusionXLPipeline.from_pretrained(
|
71 |
+
"fluently/Fluently-XL-v3-lightning",
|
72 |
+
torch_dtype=torch.float16,
|
73 |
+
use_safetensors=True,
|
74 |
+
)
|
75 |
+
pipe_xl_lightning.scheduler = DPMSolverSinglestepScheduler.from_config(pipe_xl_lightning.scheduler.config, use_karras_sigmas=False, timestep_spacing="trailing", lower_order_final=True)
|
76 |
+
pipe_xl_lightning.to(device)
|
77 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
80 |
if randomize_seed:
|
81 |
seed = random.randint(0, MAX_SEED)
|
82 |
return seed
|
83 |
|
84 |
+
|
85 |
@app.post("/generate")
|
86 |
async def generate(
|
87 |
model: str = Form(...),
|
|
|
106 |
inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
|
107 |
mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None
|
108 |
|
|
|
|
|
109 |
if model == "Fluently XL Final":
|
110 |
+
images = pipe_xl_final(
|
111 |
prompt=prompt,
|
112 |
negative_prompt=negative_prompt,
|
113 |
width=width,
|
|
|
118 |
output_type="pil",
|
119 |
).images
|
120 |
elif model == "Fluently Anime":
|
121 |
+
images = pipe_anime(
|
122 |
prompt=prompt,
|
123 |
negative_prompt=negative_prompt,
|
124 |
width=width,
|
|
|
129 |
output_type="pil",
|
130 |
).images
|
131 |
elif model == "Fluently Epic":
|
132 |
+
images = pipe_epic(
|
133 |
prompt=prompt,
|
134 |
negative_prompt=negative_prompt,
|
135 |
width=width,
|
|
|
140 |
output_type="pil",
|
141 |
).images
|
142 |
elif model == "Fluently XL v4":
|
143 |
+
images = pipe_xl(
|
144 |
prompt=prompt,
|
145 |
negative_prompt=negative_prompt,
|
146 |
width=width,
|
|
|
151 |
output_type="pil",
|
152 |
).images
|
153 |
elif model == "Fluently XL v3 Lightning":
|
154 |
+
images = pipe_xl_lightning(
|
155 |
prompt=prompt,
|
156 |
negative_prompt=negative_prompt,
|
157 |
width=width,
|
|
|
162 |
output_type="pil",
|
163 |
).images
|
164 |
elif model == "Fluently v4 inpaint" or model == "Fluently XL v3 inpaint":
|
165 |
+
blurred_mask = pipe_inpaint.mask_processor.blur(mask_image_pil, blur_factor=blur_factor)
|
166 |
+
images = pipe_inpaint(
|
167 |
prompt=prompt,
|
168 |
image=inpaint_image_pil,
|
169 |
mask_image=blurred_mask,
|
|
|
177 |
output_type="pil",
|
178 |
).images
|
179 |
|
|
|
|
|
|
|
|
|
180 |
img = images[0]
|
181 |
img_byte_arr = io.BytesIO()
|
182 |
img.save(img_byte_arr, format='PNG')
|