Spaces:
Paused
Paused
saicharan1234
commited on
Commit
•
edb8520
1
Parent(s):
12f2adb
Update main.py
Browse files
main.py
CHANGED
@@ -3,80 +3,75 @@ from fastapi import FastAPI, File, UploadFile, Form
|
|
3 |
from fastapi.responses import StreamingResponse
|
4 |
import torch
|
5 |
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, DPMSolverSinglestepScheduler
|
6 |
-
from diffusers.pipelines import StableDiffusionInpaintPipeline
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import numpy as np
|
9 |
import random
|
10 |
from PIL import Image
|
11 |
import io
|
12 |
-
import os
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
-
|
18 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
19 |
|
20 |
# Load HF token from environment variable
|
21 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
)
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
)
|
70 |
-
|
71 |
-
pipe_xl_lightning.to(device)
|
72 |
-
|
73 |
|
74 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
75 |
if randomize_seed:
|
76 |
seed = random.randint(0, MAX_SEED)
|
77 |
return seed
|
78 |
|
79 |
-
|
80 |
@app.post("/generate")
|
81 |
async def generate(
|
82 |
model: str = Form(...),
|
@@ -101,73 +96,31 @@ async def generate(
|
|
101 |
inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
|
102 |
mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
height=height,
|
110 |
-
guidance_scale=guidance_scale,
|
111 |
-
num_inference_steps=25,
|
112 |
-
num_images_per_prompt=1,
|
113 |
-
output_type="pil",
|
114 |
-
).images
|
115 |
-
elif model == "Fluently Anime":
|
116 |
-
images = pipe_anime(
|
117 |
-
prompt=prompt,
|
118 |
-
negative_prompt=negative_prompt,
|
119 |
-
width=width,
|
120 |
-
height=height,
|
121 |
-
guidance_scale=guidance_scale,
|
122 |
-
num_inference_steps=30,
|
123 |
-
num_images_per_prompt=1,
|
124 |
-
output_type="pil",
|
125 |
-
).images
|
126 |
-
elif model == "Fluently Epic":
|
127 |
-
images = pipe_epic(
|
128 |
prompt=prompt,
|
|
|
|
|
129 |
negative_prompt=negative_prompt,
|
130 |
width=width,
|
131 |
height=height,
|
132 |
guidance_scale=guidance_scale,
|
133 |
num_inference_steps=30,
|
|
|
134 |
num_images_per_prompt=1,
|
135 |
output_type="pil",
|
136 |
).images
|
137 |
-
|
138 |
-
images =
|
139 |
-
prompt=prompt,
|
140 |
-
negative_prompt=negative_prompt,
|
141 |
-
width=width,
|
142 |
-
height=height,
|
143 |
-
guidance_scale=guidance_scale,
|
144 |
-
num_inference_steps=25,
|
145 |
-
num_images_per_prompt=1,
|
146 |
-
output_type="pil",
|
147 |
-
).images
|
148 |
-
elif model == "Fluently XL v3 Lightning":
|
149 |
-
images = pipe_xl_lightning(
|
150 |
-
prompt=prompt,
|
151 |
-
negative_prompt=negative_prompt,
|
152 |
-
width=width,
|
153 |
-
height=height,
|
154 |
-
guidance_scale=2,
|
155 |
-
num_inference_steps=5,
|
156 |
-
num_images_per_prompt=1,
|
157 |
-
output_type="pil",
|
158 |
-
).images
|
159 |
-
elif model == "Fluently v4 inpaint" or model == "Fluently XL v3 inpaint":
|
160 |
-
blurred_mask = pipe_inpaint.mask_processor.blur(mask_image_pil, blur_factor=blur_factor)
|
161 |
-
images = pipe_inpaint(
|
162 |
prompt=prompt,
|
163 |
-
image=inpaint_image_pil,
|
164 |
-
mask_image=blurred_mask,
|
165 |
negative_prompt=negative_prompt,
|
166 |
width=width,
|
167 |
height=height,
|
168 |
guidance_scale=guidance_scale,
|
169 |
-
num_inference_steps=30,
|
170 |
-
strength=strength,
|
171 |
num_images_per_prompt=1,
|
172 |
output_type="pil",
|
173 |
).images
|
@@ -179,7 +132,6 @@ async def generate(
|
|
179 |
|
180 |
return StreamingResponse(img_byte_arr, media_type="image/png")
|
181 |
|
182 |
-
|
183 |
if __name__ == "__main__":
|
184 |
import uvicorn
|
185 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
3 |
from fastapi.responses import StreamingResponse
|
4 |
import torch
|
5 |
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, DPMSolverSinglestepScheduler
|
6 |
+
from diffusers.pipelines import StableDiffusionInpaintPipeline
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import numpy as np
|
9 |
import random
|
10 |
from PIL import Image
|
11 |
import io
|
|
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
16 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
# Load HF token from environment variable
|
19 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
20 |
|
21 |
+
# Function to load pipeline dynamically
|
22 |
+
def load_pipeline(model_name: str):
|
23 |
+
if model_name == "Fluently XL Final":
|
24 |
+
pipe = StableDiffusionXLPipeline.from_single_file(
|
25 |
+
hf_hub_download(repo_id="fluently/Fluently-XL-Final", filename="FluentlyXL-Final.safetensors", token=HF_TOKEN),
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
use_safetensors=True,
|
28 |
+
)
|
29 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
30 |
+
elif model_name == "Fluently Anime":
|
31 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
32 |
+
"fluently/Fluently-anime",
|
33 |
+
torch_dtype=torch.float16,
|
34 |
+
use_safetensors=True,
|
35 |
+
)
|
36 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
37 |
+
elif model_name == "Fluently Epic":
|
38 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
39 |
+
"fluently/Fluently-epic",
|
40 |
+
torch_dtype=torch.float16,
|
41 |
+
use_safetensors=True,
|
42 |
+
)
|
43 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
44 |
+
elif model_name == "Fluently XL v4":
|
45 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
46 |
+
"fluently/Fluently-XL-v4",
|
47 |
+
torch_dtype=torch.float16,
|
48 |
+
use_safetensors=True,
|
49 |
+
)
|
50 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
51 |
+
elif model_name == "Fluently XL v3 Lightning":
|
52 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
53 |
+
"fluently/Fluently-XL-v3-lightning",
|
54 |
+
torch_dtype=torch.float16,
|
55 |
+
use_safetensors=True,
|
56 |
+
)
|
57 |
+
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=False, timestep_spacing="trailing", lower_order_final=True)
|
58 |
+
elif model_name == "Fluently v4 inpaint":
|
59 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
60 |
+
"fluently/Fluently-v4-inpainting",
|
61 |
+
torch_dtype=torch.float16,
|
62 |
+
use_safetensors=True,
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
raise ValueError(f"Unknown model: {model_name}")
|
66 |
+
|
67 |
+
pipe.to(device)
|
68 |
+
return pipe
|
|
|
|
|
69 |
|
70 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
71 |
if randomize_seed:
|
72 |
seed = random.randint(0, MAX_SEED)
|
73 |
return seed
|
74 |
|
|
|
75 |
@app.post("/generate")
|
76 |
async def generate(
|
77 |
model: str = Form(...),
|
|
|
96 |
inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
|
97 |
mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None
|
98 |
|
99 |
+
pipe = load_pipeline(model)
|
100 |
+
|
101 |
+
if model in ["Fluently v4 inpaint"]:
|
102 |
+
blurred_mask = pipe.mask_processor.blur(mask_image_pil, blur_factor=blur_factor)
|
103 |
+
images = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
prompt=prompt,
|
105 |
+
image=inpaint_image_pil,
|
106 |
+
mask_image=blurred_mask,
|
107 |
negative_prompt=negative_prompt,
|
108 |
width=width,
|
109 |
height=height,
|
110 |
guidance_scale=guidance_scale,
|
111 |
num_inference_steps=30,
|
112 |
+
strength=strength,
|
113 |
num_images_per_prompt=1,
|
114 |
output_type="pil",
|
115 |
).images
|
116 |
+
else:
|
117 |
+
images = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
prompt=prompt,
|
|
|
|
|
119 |
negative_prompt=negative_prompt,
|
120 |
width=width,
|
121 |
height=height,
|
122 |
guidance_scale=guidance_scale,
|
123 |
+
num_inference_steps=25 if model == "Fluently XL Final" else 30,
|
|
|
124 |
num_images_per_prompt=1,
|
125 |
output_type="pil",
|
126 |
).images
|
|
|
132 |
|
133 |
return StreamingResponse(img_byte_arr, media_type="image/png")
|
134 |
|
|
|
135 |
if __name__ == "__main__":
|
136 |
import uvicorn
|
137 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|