File size: 3,328 Bytes
9b61800
 
 
 
 
 
 
 
 
 
 
e20929a
 
9b61800
 
 
e20929a
330338a
 
 
 
 
 
 
 
e20929a
330338a
 
9b61800
e20929a
 
9b61800
 
 
76c896a
642315a
1e1d532
e20929a
1e1d532
 
 
 
 
 
e20929a
1e1d532
 
e20929a
9b61800
 
 
642315a
9b61800
 
e20929a
76c896a
 
 
 
 
9b61800
29734be
9b61800
 
 
29734be
9b61800
 
 
 
 
 
 
29734be
9b61800
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
'''
 Description  : 
 Version      : 1.0
 Author       : Chaofan Tao
 Mail         : [email protected]
 Github       : https://github.com/sail-sg/scaling-with-vocab
 Date         : 2024-08-09 00:25
 Copyright (C) 2024 Chaofan Tao. All rights reserved.
'''
import gradio as gr
from utils import approach1_isoflops, approach2_derivative, approach3_isoloss


def compute_optimal_vocab(Nnv: float,
                        flops: float, 
                        ):
    
    if flops is None:
        Vopt_app1 = approach1_isoflops(Nnv)
        Vopt_app2 = approach2_derivative(Nnv)
        Vopt_app3 = approach3_isoloss(Nnv) 
    else:
        Vopt_app1,  Vopt_app2 = None, None
        Vopt_app3 = approach3_isoloss(Nnv, flops) 
    # Vopt_app1, Vopt_app2, Vopt_app3=1.,2.,3.
    
    results = 'test'
    # results = f"The optimal vocabulary size is:\nApproach 1: {Vopt_app1}\nApproach 2: {Vopt_app2}\nApproach 3: {Vopt_app3}"
    return results


with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown(
            """<img src="https://github.com/sail-sg/scaling-with-vocab/blob/main/figures/figure_1_left_scaling_v5.png" style="float: left;" width="250" height="250"><h1>The Optimal Vocabulary Size Predictor</h1>
            This tool is used to predict the optimal vocabulary size given the non-vocabulary parameters.
            We provide 3 ways for prediction:

            - Approach 1: Build the relationship between studied attributes and FLOPs: Build the relationship between the optimal data points (the points that reach the lowest loss under the same FLOPs budget) and the FLOPs.
            - Approach 2: Derivative-Based Estimation: Fast calculation method using the derivative of FLOPs with respect to the vocabulary size.
            - Approach 3: Parametric Fit of Loss Formula: Design a loss formula that considers the effect of vocabulary size and utilizes the loss to make prediction.
            
            Approach 1 and 2 can only be used to compute the optimal vocabulary size when the compute is optimally allocated to non-vocabulary parameters, vocabulary parameters and data jointly.
            Approach 3 will not only consider the case above, but also consider the case when the amount of data does not satisfy the optimal compute allocation, and can calculate the optimal vocabulary size with specified $N_{nv}$ and FLOPs.

            Thanks for trying 🌟🌟🌟!
            """)
        
        with gr.Row():
            Nnv = gr.Textbox(label="Non-vocabulary Parameters", value=7*10**9)
            flops = gr.Textbox(label="FLOPs", placeholder="Optional (e.g. 7.05*10**21)")
            output_text = gr.Textbox(label="Prediction")
        with gr.Row():
            btn = gr.Button("Compute the optimal vocabulary size")

        btn.click(
            compute_optimal_vocab,
            inputs=[Nnv, flops],
            outputs=output_text
        )
demo.launch()

# import gradio as gr
# def update(name):
#     return f"Welcome to Gradio, {name}!"

# with gr.Blocks() as demo:
#     gr.Markdown("Start typing below and then click **Run** to see the output.")
#     with gr.Row():
#         inp = gr.Textbox(placeholder="What is your name?")
#         out = gr.Textbox()
#     btn = gr.Button("Run")
#     btn.click(fn=update, inputs=inp, outputs=out)

# demo.launch()