sailfish's picture
fix 9
00cdb9a
raw
history blame
3.75 kB
import gradio as gr
import os
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
model_name = "meta-llama/Llama-3.2-1B"
huggingface_token = os.getenv("SECRET_ENV_VARIABLE")
#client = InferenceClient(api_key=huggingface_token)
client = InferenceClient(model=model_name, token=huggingface_token)
'''
import requests
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-3.2-1B"
headers = {"Authorization": "Bearer "}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": "Can you please let us know more details about your ",
})
'''
def generate_text(
prompt,
system_message,
max_tokens,
temperature,
top_p
):
try:
print(f"Attempting to generate text for prompt: {prompt[:50]}...")
response = client.text_generation(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_k=50,
top_p=top_p,
do_sample=True
)
print(f"Generated text: {response[:100]}...")
return response
except Exception as e:
print(f"Error in generate_text: {type(e).__name__}: {str(e)}")
return f"An error occurred: {type(e).__name__}: {str(e)}"
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
demo = gr.ChatInterface(
#respond,
generate_text,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
"""
with gr.Tab("Generate Email"):
Query = gr.Textbox(label="Query")
generate_button = gr.Button("Ask Query")
output = gr.Textbox(label="Generated Answer", lines=10)
generate_button.click(generate_text,
#inputs=[industry, recipient_role, company_details],
additional_inputs=[
Query,
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
outputs=output)
if __name__ == "__main__":
demo.launch()