Spaces:
Running
Running
import gradio as gr | |
import os | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
model_name = "meta-llama/Llama-3.2-1B" | |
huggingface_token = os.getenv("SECRET_ENV_VARIABLE") | |
#client = InferenceClient(api_key=huggingface_token) | |
client = InferenceClient(model=model_name, token=huggingface_token) | |
''' | |
import requests | |
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-3.2-1B" | |
headers = {"Authorization": "Bearer "} | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
output = query({ | |
"inputs": "Can you please let us know more details about your ", | |
}) | |
''' | |
def generate_text( | |
prompt, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p | |
): | |
try: | |
print(f"Attempting to generate text for prompt: {prompt[:50]}...") | |
response = client.text_generation( | |
prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_k=50, | |
top_p=top_p, | |
do_sample=True | |
) | |
print(f"Generated text: {response[:100]}...") | |
return response | |
except Exception as e: | |
print(f"Error in generate_text: {type(e).__name__}: {str(e)}") | |
return f"An error occurred: {type(e).__name__}: {str(e)}" | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
demo = gr.ChatInterface( | |
#respond, | |
generate_text, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
""" | |
with gr.Tab("Generate Email"): | |
Query = gr.Textbox(label="Query") | |
generate_button = gr.Button("Ask Query") | |
output = gr.Textbox(label="Generated Answer", lines=10) | |
generate_button.click(generate_text, | |
#inputs=[industry, recipient_role, company_details], | |
additional_inputs=[ | |
Query, | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
outputs=output) | |
if __name__ == "__main__": | |
demo.launch() | |