Spaces:
Sleeping
Sleeping
File size: 3,675 Bytes
2321c66 1f9aa71 d484afb 2334c6b 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 171aee0 0b76712 2321c66 0b76712 2321c66 0b76712 2321c66 0b76712 171aee0 2321c66 0b76712 2321c66 0b76712 2321c66 d9bdbe2 5353c1d c8b10d8 4fb1273 0b76712 8fb982e 85d00ce 1f9aa71 2334c6b 1f9aa71 2334c6b a2dfe55 2334c6b d355ea6 2334c6b 171aee0 0b76712 171aee0 85d00ce 171aee0 2321c66 171aee0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
from st_audiorec import st_audiorec
import whisper
from googletrans import Translator
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader= PdfReader(pdf)
for page in pdf_reader.pages:
text+= page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-pro",
temperature=0.1)
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization= True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain(
{"input_documents":docs, "question": user_question}
, return_only_outputs=True)
print(response)
st.write("Reply: ", response["output_text"])
def main():
st.set_page_config("Chat PDF")
st.header("QnA with Multiple PDF files💁")
# Audio recording
wav_audio_data = st_audiorec()
if wav_audio_data is not None:
with open("query.wav", "wb") as f:
f.write(wav_audio_data)
model = whisper.load_model("large")
result = model.transcribe("query.wav")
detected_language = result["language"]
transcribed_text = result["text"]
translator = Translator()
translation = translator.translate(transcribed_text, dest="en")
user_question = translation.text
st.write("Detected Language:", detected_language)
st.write("Transcribed Text:", transcribed_text)
st.write("Translated Question:", user_question)
user_input(user_question)
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Done")
if __name__ == "__main__":
main() |