import os import tempfile import gradio as gr from TTS.api import TTS from TTS.utils.synthesizer import Synthesizer from huggingface_hub import hf_hub_download import json from zipfile import ZipFile # Define constants #MODEL_INFO = [ #["vits checkpoint 57000", "checkpoint_57000.pth", "config.json", "mhrahmani/persian-tts-vits-0"], # ["VITS Grapheme Multispeaker CV15(reduct)(best at 17864)", "best_model_17864.pth", "config.json", # "saillab/persian-tts-cv15-reduct-grapheme-multispeaker"], #["Single speaker (best)VITS Grapheme Azure (61000)", "checkpoint_61000.pth", "config.json", "saillab/persian-tts-azure-grapheme-60K"], #["VITS Grapheme ARM24 Fine-Tuned on 1 (66651)", "best_model_66651.pth", "config.json","saillab/persian-tts-grapheme-arm24-finetuned-on1"], #["VITS Female single speaker","best_model_15397.pth","config.json","saillab/ZabanZad_VITS_Female"], #["Multi Speaker Vits Grapheme CV+Azure in one set ","best_model_358320.pth","config.json","saillab/Multi_Speaker_Cv_plus_Azure_female_in_one_set","speakers.pth"], #["Multispeaker VITS Grapheme CV15(reduct)(22000)", "checkpoint_22000.pth", "config.json", "saillab/persian-tts-cv15-reduct-grapheme-multispeaker", "speakers.pth"], #["Multispeaker VITS Grapheme CV15(reduct)(26000)", "checkpoint_25000.pth", "config.json", "saillab/persian-tts-cv15-reduct-grapheme-multispeaker", "speakers.pth"], #["Multispeaker VITS Grapheme CV15(90K)", "best_model_56960.pth", "config.json", "saillab/multi_speaker", "speakers.pth"], #["Single speaker female best VITS Grapheme CV-Azure_male-Azure_female","best_model_15397.pth","config.json","saillab/female_cv_azure_male_azure_female","speakers.pth"], # ["VITS Grapheme Azure (best at 15934)", "best_model_15934.pth", "config.json", # "saillab/persian-tts-azure-grapheme-60K"], #["Single speaker VITS Grapheme ARM24 Fine-Tuned on 1 (66651)", "best_model_66651.pth", "config.json","saillab/persian-tts-grapheme-arm24-finetuned-on1"], #["Single speaker VITS Grapheme ARM24 Fine-Tuned on 1 (120000)", "checkpoint_120000.pth", "config.json","saillab/persian-tts-grapheme-arm24-finetuned-on1"], # ... Add other models similarly #] MODEL_INFO = MODEL_INFO = [ ["VITS Male Single Speaker", "checkpoint_61000.pth", "config.json", "saillab/ZabanZad_VITS_MAle"], ["VITS Female Single speaker","best_model_15397.pth","config.json","saillab/ZabanZad_VITS_Female","speakers1.pth"], ] # Extract model names from MODEL_INFO MODEL_NAMES = [info[0] for info in MODEL_INFO] MAX_TXT_LEN = 400 TOKEN = os.getenv('HUGGING_FACE_HUB_TOKEN') model_files = {} config_files = {} speaker_files = {} # Create a dictionary to store synthesizer objects for each model synthesizers = {} def update_config_speakers_file_recursive(config_dict, speakers_path): """Recursively update speakers_file keys in a dictionary.""" if "speakers_file" in config_dict: config_dict["speakers_file"] = speakers_path for key, value in config_dict.items(): if isinstance(value, dict): update_config_speakers_file_recursive(value, speakers_path) def update_config_speakers_file(config_path, speakers_path): """Update the config.json file to point to the correct speakers.pth file.""" # Load the existing config with open(config_path, 'r') as f: config = json.load(f) # Modify the speakers_file entry update_config_speakers_file_recursive(config, speakers_path) # Save the modified config with open(config_path, 'w') as f: json.dump(config, f, indent=4) # Download models and initialize synthesizers for info in MODEL_INFO: model_name, model_file, config_file, repo_name = info[:4] speaker_file = info[4] if len(info) == 5 else None # Check if speakers.pth is defined for the model print(f"|> Downloading: {model_name}") # Download model and config files model_files[model_name] = hf_hub_download(repo_id=repo_name, filename=model_file, use_auth_token=TOKEN) config_files[model_name] = hf_hub_download(repo_id=repo_name, filename=config_file, use_auth_token=TOKEN) # Download speakers.pth if it exists if speaker_file: speaker_files[model_name] = hf_hub_download(repo_id=repo_name, filename=speaker_file, use_auth_token=TOKEN) update_config_speakers_file(config_files[model_name], speaker_files[model_name]) # Update the config file print(speaker_files[model_name]) # Initialize synthesizer for the model synthesizer = Synthesizer( tts_checkpoint=model_files[model_name], tts_config_path=config_files[model_name], tts_speakers_file=speaker_files[model_name], # Pass the speakers.pth file if it exists use_cuda=False # Assuming you don't want to use GPU, adjust if needed ) elif speaker_file is None: # Initialize synthesizer for the model synthesizer = Synthesizer( tts_checkpoint=model_files[model_name], tts_config_path=config_files[model_name], # tts_speakers_file=speaker_files.get(model_name, None), # Pass the speakers.pth file if it exists use_cuda=False # Assuming you don't want to use GPU, adjust if needed ) synthesizers[model_name] = synthesizer #def synthesize(text: str, model_name: str, speaker_name="speaker-0") -> str: def synthesize(text: str, model_name: str, speaker_name=None) -> str: """Synthesize speech using the selected model.""" if len(text) > MAX_TXT_LEN: text = text[:MAX_TXT_LEN] print(f"Input text was cut off as it exceeded the {MAX_TXT_LEN} character limit.") # Use the synthesizer object for the selected model synthesizer = synthesizers[model_name] if synthesizer is None: raise NameError("Model not found") if synthesizer.tts_speakers_file is "": wavs = synthesizer.tts(text) elif synthesizer.tts_speakers_file is not "": if speaker_name == "": #wavs = synthesizer.tts(text, speaker_name="speaker-0") ## should change, better if gradio conditions are figure out. wavs = synthesizer.tts(text, speaker_name=None) else: wavs = synthesizer.tts(text, speaker_name=speaker_name) with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: synthesizer.save_wav(wavs, fp) return fp.name # Callback function to update UI based on the selected model def update_options(model_name): synthesizer = synthesizers[model_name] # if synthesizer.tts.is_multi_speaker: if model_name is MODEL_NAMES[1]: speakers = synthesizer.tts_model.speaker_manager.speaker_names # return options for the dropdown return speakers else: # return empty options if not multi-speaker return [] links = """ """ # Create Gradio interface iface = gr.Interface( fn=synthesize, inputs=[ gr.Textbox(label="Enter Text to Synthesize:", value="زین همرهان سست عناصر، دلم گرفت."), gr.Radio(label="Pick a Model", choices=MODEL_NAMES, value=MODEL_NAMES[0], type="value"), #gr.Dropdown(label="Select Speaker", choices=update_options(MODEL_NAMES[1]), type="value", default="speaker-0") gr.Dropdown(label="Select Speaker", choices=update_options(MODEL_NAMES[1]), type="value", default=None) ], outputs=gr.Audio(label="Output", type='filepath'), examples=[["زبان فارسی یکی از زبان های زنده و ارزشمند دنیاست که حدود ده درصد محتوای اینترنتی کل جهان به زبان فارسی است.", MODEL_NAMES[0], "speaker-0"], ["رسول پرویزی خودش را نقال می‌داند. با نقل قصه‌هایی به شیرینی قند و شکر و البته طنز تلخی که در گوشه‌گوشه‌ کتاب جای دارد. او از مردم شیراز حرف می‌زند. طبقه‌ای‌ ساده و بی‌آلایش. آن‌ها در دورانی زندگی می‌کردند که کمتر کسی باسواد بود.", MODEL_NAMES[0], "speaker-0"]], # Example should include a speaker name for multispeaker models title="VITS ZabanZad 😎", description=""" This demo is currently running **VITS** support Persian Language. **VITS** is a text-to-speech model that translates written text into natural-sounding, human-like speech. It uses a combination of variational autoencoders and generative adversarial networks to create voice outputs that are realistic and can be customized for various applications, ranging from virtual assistants to audiobook narration. This is the same model that powers our creator application [SAIL LAB UNH](https://github.com/UNHSAILLab/Persian-TTS). Leave a star 🌟 on Github if you use and like our model! Stand with us as we strive not only to shape the future of Persian Text-to-Speech technologies but also to create a more inclusive and accessible space for Persian speakers worldwide [Gofundme](https://www.gofundme.com/f/zabanzad-Persian-TTS). """, article=links, live=False ) iface.launch()