Spaces:
Running
Running
File size: 8,807 Bytes
397bbeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os, sys
import cv2
import numpy as np
from time import time
from scipy.io import savemat
import argparse
from tqdm import tqdm, trange
import torch
import face_alignment
import deep_3drecon
from moviepy.editor import VideoFileClip
import copy
from utils.commons.multiprocess_utils import multiprocess_run_tqdm, multiprocess_run
from utils.commons.meters import Timer
from decord import VideoReader
from decord import cpu, gpu
from utils.commons.face_alignment_utils import mediapipe_lm478_to_face_alignment_lm68
import mediapipe
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
# fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, network_size=4, device='cuda')
mp_face_mesh = mediapipe.solutions.face_mesh
face_reconstructor = deep_3drecon.Reconstructor()
def chunk(iterable, chunk_size):
final_ret = []
cnt = 0
ret = []
for record in iterable:
if cnt == 0:
ret = []
ret.append(record)
cnt += 1
if len(ret) == chunk_size:
final_ret.append(ret)
ret = []
if len(final_ret[-1]) != chunk_size:
final_ret.append(ret)
return final_ret
# landmark detection in Deep3DRecon
def lm68_2_lm5(in_lm):
assert in_lm.ndim == 2
# in_lm: shape=[68,2]
lm_idx = np.array([31,37,40,43,46,49,55]) - 1
# 将上述特殊角点的数据取出,得到5个新的角点数据,拼接起来。
lm = np.stack([in_lm[lm_idx[0],:],np.mean(in_lm[lm_idx[[1,2]],:],0),np.mean(in_lm[lm_idx[[3,4]],:],0),in_lm[lm_idx[5],:],in_lm[lm_idx[6],:]], axis = 0)
# 将第一个角点放在了第三个位置
lm = lm[[1,2,0,3,4],:2]
return lm
def extract_frames_job(fname):
out_name=fname.replace(".mp4", "_coeff_pt.npy").replace("datasets/raw/cropped_clips", "datasets/processed/coeff")
if os.path.exists(out_name):
return None
video_reader = VideoReader(fname, ctx=cpu(0))
frame_rgb_lst = video_reader.get_batch(list(range(0,len(video_reader)))).asnumpy()
return frame_rgb_lst
def extract_lms_mediapipe_job(frames):
if frames is None:
return None
with mp_face_mesh.FaceMesh(
static_image_mode=False,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5) as face_mesh:
ldms_normed = []
frame_i = 0
frame_ids = []
for i in range(len(frames)):
# Convert the BGR image to RGB before processing.
ret = face_mesh.process(frames[i])
# Print and draw face mesh landmarks on the image.
if not ret.multi_face_landmarks:
print(f"Skip Item: Caught errors when mediapipe get face_mesh, maybe No face detected in some frames!")
return None
else:
myFaceLandmarks = []
lms = ret.multi_face_landmarks[0]
for lm in lms.landmark:
myFaceLandmarks.append([lm.x, lm.y, lm.z])
ldms_normed.append(myFaceLandmarks)
frame_ids.append(frame_i)
frame_i += 1
bs, H, W, _ = frames.shape
ldms478 = np.array(ldms_normed)
lm68 = mediapipe_lm478_to_face_alignment_lm68(ldms478, H, W, return_2d=True)
lm5_lst = [lm68_2_lm5(lm68[i]) for i in range(lm68.shape[0])]
lm5 = np.stack(lm5_lst)
return ldms478, lm68, lm5
def process_video_batch(fname_lst, out_name_lst=None):
frames_lst = []
with Timer("load_frames", True):
for (i, res) in multiprocess_run_tqdm(extract_frames_job, fname_lst, num_workers=2, desc="decord is loading frames in the batch videos..."):
frames_lst.append(res)
lm478s_lst = []
lm68s_lst = []
lm5s_lst = []
with Timer("mediapipe_faceAlign", True):
for (i, res) in multiprocess_run_tqdm(extract_lms_mediapipe_job, frames_lst, num_workers=2, desc="mediapipe is predicting face mesh in batch videos..."):
if res is None:
res = (None, None, None)
lm478s, lm68s, lm5s = res
lm478s_lst.append(lm478s)
lm68s_lst.append(lm68s)
lm5s_lst.append(lm5s)
processed_cnt_in_this_batch = 0
with Timer("deep_3drecon_pytorch", True):
for i, fname in tqdm(enumerate(fname_lst), total=len(fname_lst), desc="extracting 3DMM in the batch videos..."):
video_rgb = frames_lst[i] # [t, 224,224, 3]
lm478_arr = lm478s_lst[i]
lm68_arr = lm68s_lst[i]
lm5_arr = lm5s_lst[i]
if lm5_arr is None:
continue
num_frames = len(video_rgb)
batch_size = 32
iter_times = num_frames // batch_size
last_bs = num_frames % batch_size
coeff_lst = []
for i_iter in range(iter_times):
start_idx = i_iter * batch_size
batched_images = video_rgb[start_idx: start_idx + batch_size]
batched_lm5 = lm5_arr[start_idx: start_idx + batch_size]
coeff, align_img = face_reconstructor.recon_coeff(batched_images, batched_lm5, return_image = True)
coeff_lst.append(coeff)
if last_bs != 0:
batched_images = video_rgb[-last_bs:]
batched_lm5 = lm5_arr[-last_bs:]
coeff, align_img = face_reconstructor.recon_coeff(batched_images, batched_lm5, return_image = True)
coeff_lst.append(coeff)
coeff_arr = np.concatenate(coeff_lst,axis=0)
result_dict = {
'coeff': coeff_arr.reshape([num_frames, -1]).astype(np.float32),
'lm478': lm478_arr.reshape([num_frames, 478, 3]).astype(np.float32),
'lm68': lm68_arr.reshape([num_frames, 68, 2]).astype(np.int16),
'lm5': lm5_arr.reshape([num_frames, 5, 2]).astype(np.int16),
}
np.save(out_name_lst[i], result_dict)
processed_cnt_in_this_batch +=1
print(f"In this batch {processed_cnt_in_this_batch} files are processed")
def split_wav(mp4_name):
wav_name = mp4_name[:-4] + '.wav'
if os.path.exists(wav_name):
return
video = VideoFileClip(mp4_name,verbose=False)
dur = video.duration
audio = video.audio
assert audio is not None
audio.write_audiofile(wav_name,fps=16000,verbose=False,logger=None)
if __name__ == '__main__':
### Process Single Long video for NeRF dataset
# video_id = 'May'
# video_fname = f"data/raw/videos/{video_id}.mp4"
# out_fname = f"data/processed/videos/{video_id}/coeff.npy"
# process_video(video_fname, out_fname)
### Process short video clips for LRS3 dataset
import random
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--lrs3_path', type=str, default='/home/yezhenhui/projects/TalkingHead-1KH/datasets/raw/cropped_clips', help='')
parser.add_argument('--process_id', type=int, default=0, help='')
parser.add_argument('--total_process', type=int, default=1, help='')
args = parser.parse_args()
import os, glob
lrs3_dir = args.lrs3_path
out_dir = lrs3_dir.replace("raw/cropped_clips", "processed/coeff")
os.makedirs(out_dir, exist_ok=True)
# mp4_name_pattern = os.path.join(lrs3_dir, "*.mp4")
# mp4_names = glob.glob(mp4_name_pattern)
with open('/home/yezhenhui/projects/LDMAvatar/clean.txt', 'r') as f:
txt = f.read()
mp4_names = txt.split("\n")
mp4_names = sorted(mp4_names)
if args.total_process > 1:
assert args.process_id <= args.total_process-1
num_samples_per_process = len(mp4_names) // args.total_process
if args.process_id == args.total_process-1:
mp4_names = mp4_names[args.process_id * num_samples_per_process : ]
else:
mp4_names = mp4_names[args.process_id * num_samples_per_process : (args.process_id+1) * num_samples_per_process]
random.seed(111)
random.shuffle(mp4_names)
batched_mp4_names_lst = chunk(mp4_names, chunk_size=8)
for batch_mp4_names in tqdm(batched_mp4_names_lst, desc='[ROOT]: extracting face mesh and 3DMM in batches...'):
try:
for mp4_name in batch_mp4_names:
split_wav(mp4_name)
out_names = [mp4_name.replace(".mp4", "_coeff_pt.npy").replace("datasets/raw/cropped_clips", "datasets/processed/coeff") for mp4_name in batch_mp4_names]
process_video_batch(batch_mp4_names, out_names)
# process_video(mp4_name,out_name=mp4_name.replace(".mp4", "_coeff_pt.npy").replace("datasets/raw/cropped_clips", "datasets/processed/coeff"))
except Exception as e:
print(e)
continue
|