Spaces:
Runtime error
Runtime error
File size: 1,350 Bytes
8d36d7f 81790ad f7ebce1 8d36d7f d59f4ba 8d36d7f a84cb0e b395c6f 8d36d7f f7ebce1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import datasets
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import gradio as gr
import torch
dataset = datasets.load_dataset('beans')
extractor = AutoFeatureExtractor.from_pretrained("saved_model_files")
model = AutoModelForImageClassification.from_pretrained("saved_model_files")
labels = dataset['train'].features['labels'].names
def classify(im):
features = extractor(im, return_tensors='pt')
logits = model(features["pixel_values"])[-1]
probability = torch.nn.functional.softmax(logits, dim=-1)
probs = probability[0].detach().numpy()
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
return confidences
interface = gr.Interface(
fn = classify,
inputs= "image",
outputs= "label",
title = 'Leaf Classication',
description = "Many farmers are turning machine learning to monitor their crops automatically with great accuracy. This application can be used to detect Angular Leaf Spot and Bean Rust in Bean Leaves :)",
examples = [["bean_rust.jpeg"] , ["healthy.jpeg"] , ["angular_leaf_spot.jpeg"] , ['AngularLeafSpotFig1a.jpg'] , ['bacterial-brown-spot-bean.jpg'] , ['beans-viral-diseases-1.jpg']]
)
interface.launch() |