Spaces:
Running
Running
File size: 7,981 Bytes
113dc2c 0dec378 27e4a6a d4fba6d 4816388 2fc432b 4816388 d95dbe9 32fdddd 219d097 471c590 52a0784 757da8f 27e4a6a 4816388 27e4a6a d95dbe9 4816388 d95dbe9 c79e0ac f0f180b c79e0ac f0f180b 1a52ee5 68ef0f8 f0f180b d2a5152 f0f180b c79e0ac f0f180b 481dde5 d2a5152 d95dbe9 f0f180b c79e0ac 4816388 c79e0ac dcb68b8 f0f180b 4816388 f0f180b d2a5152 f0f180b c79e0ac f0f180b 27e4a6a 4816388 438c833 53635c2 f0f180b 4816388 812aaeb f0f180b dcb68b8 812aaeb dcb68b8 5d264e2 f0f180b e7fe446 438c833 f0f180b 438c833 f0f180b 9ce8f90 757da8f cfc9459 27e4a6a d2a5152 dcb68b8 ee8fb83 4816388 dcb68b8 4816388 9ce8f90 4816388 53635c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import numpy as np
import random
from pathlib import Path
from PIL import Image
import streamlit as st
from huggingface_hub import InferenceClient, AsyncInferenceClient
from gradio_client import Client, handle_file
import asyncio
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)
def enable_lora(lora_add, basemodel):
return lora_add if lora_add else basemodel
async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
image = await client.text_to_image(
prompt=combined_prompt, height=height, width=width, guidance_scale=scales,
num_inference_steps=steps, model=model
)
return image, seed
except Exception as e:
return f"Error al generar imagen: {e}", None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(
input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor
)
return result[1] if isinstance(result, list) and len(result) > 1 else None
except Exception as e:
return None
def save_prompt(prompt_text, seed):
try:
prompt_file_path = DATA_PATH / f"prompt_{seed}.txt"
with open(prompt_file_path, "w") as prompt_file:
prompt_file.write(prompt_text)
return prompt_file_path
except Exception as e:
st.error(f"Error al guardar el prompt: {e}")
return None
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
improved_prompt = await improve_prompt(prompt)
combined_prompt = f"{prompt} {improved_prompt}"
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
progress_bar = st.progress(0)
image, seed = await generate_image(combined_prompt, model, width, height, scales, steps, seed)
progress_bar.progress(50)
if isinstance(image, str) and image.startswith("Error"):
progress_bar.empty()
return [image, None, combined_prompt]
image_path = save_image(image, seed)
prompt_file_path = save_prompt(combined_prompt, seed)
if process_upscale:
upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
if upscale_image_path:
upscale_image = Image.open(upscale_image_path)
upscale_image.save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG")
progress_bar.progress(100)
image_path.unlink()
return [str(DATA_PATH / f"upscale_image_{seed}.jpg"), str(prompt_file_path")]
else:
progress_bar.empty()
return [str(image_path), str(prompt_file_path)]
else:
progress_bar.progress(100)
return [str(image_path), str(prompt_file_path)]
async def improve_prompt(prompt):
try:
instruction = ("With this idea, describe in English a detailed txt2img prompt in 300 characters at most...")
formatted_prompt = f"{instruction}"
response = llm_client.text_generation(formatted_prompt, max_new_tokens=300)
improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()
return improved_text[:300] if len(improved_text) > 300 else improved_text
except Exception as e:
return f"Error mejorando el prompt: {e}"
def save_image(image, seed):
try:
image_path = DATA_PATH / f"image_{seed}.jpg"
image.save(image_path, format="JPEG")
return image_path
except Exception as e:
st.error(f"Error al guardar la imagen: {e}")
return None
def get_storage():
files = [{"name": str(file.resolve()), "size": file.stat().st_size} for file in DATA_PATH.glob("*.jpg") if file.is_file()]
usage = sum([f['size'] for f in files])
return [f["name"] for f in files], f"Uso total: {usage/(1024.0 ** 3):.3f}GB"
def get_prompts():
prompt_files = [file for file in DATA_PATH.glob("*.txt") if file.is_file()]
return {file.stem.replace("prompt_", ""): file for file in prompt_files}
def delete_image(image_path):
try:
if Path(image_path).exists():
Path(image_path).unlink()
st.success(f"Imagen {image_path} borrada.")
else:
st.error("El archivo de imagen no existe.")
except Exception as e:
st.error(f"Error al borrar la imagen: {e}")
def main():
st.set_page_config(layout="wide")
st.title("Generador de Imágenes FLUX")
prompt = st.sidebar.text_input("Descripción de la imagen", max_chars=200)
with st.sidebar.expander("Opciones avanzadas", expanded=False):
basemodel = st.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"])
lora_model = st.selectbox("LORA Realismo", ["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"])
format_option = st.selectbox("Formato", ["9:16", "16:9"])
process_lora = st.checkbox("Procesar LORA")
process_upscale = st.checkbox("Procesar Escalador")
upscale_factor = st.selectbox("Factor de Escala", [2, 4, 8], index=0)
scales = st.slider("Escalado", 1, 20, 10)
steps = st.slider("Pasos", 1, 100, 20)
seed = st.number_input("Semilla", value=-1)
if format_option == "9:16":
width = 720
height = 1280
else:
width = 1280
height = 720
if st.sidebar.button("Generar Imagen"):
with st.spinner("Mejorando y generando imagen..."):
improved_prompt = asyncio.run(improve_prompt(prompt))
st.session_state.improved_prompt = improved_prompt
prompt_to_use = st.session_state.get('improved_prompt', prompt)
result = asyncio.run(gen(prompt_to_use, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora))
image_paths = result[0]
prompt_file = result[1]
st.write(f"Image paths: {image_paths}")
if image_paths:
if Path(image_paths).exists():
st.image(image_paths, caption="Imagen Generada")
else:
st.error("El archivo de imagen no existe.")
if prompt_file and Path(prompt_file).exists():
prompt_text = Path(prompt_file).read_text()
st.write(f"Prompt utilizado: {prompt_text}")
else:
st.write("El archivo del prompt no está disponible.")
files, usage = get_storage()
st.text(usage)
cols = st.columns(6)
prompts = get_prompts()
for idx, file in enumerate(files):
with cols[idx % 6]:
image = Image.open(file)
prompt_file = prompts.get(Path(file).stem.replace("image_", ""), None)
prompt_text = Path(prompt_file).read_text() if prompt_file else "No disponible"
st.image(image, caption=f"Imagen {idx+1}")
st.write(f"Prompt: {prompt_text}")
if st.button(f"Borrar Imagen {idx+1}", key=f"delete_{idx}"):
try:
os.remove(file)
if prompt_file:
os.remove(prompt_file)
st.success(f"Imagen {idx+1} y su prompt fueron borrados.")
except Exception as e:
st.error(f"Error al borrar la imagen o prompt: {e}")
if __name__ == "__main__":
main() |