Spaces:
Running
Running
File size: 8,007 Bytes
644a3af 78936f3 644a3af b2d8766 644a3af f7786aa 644a3af b2d8766 644a3af b2d8766 644a3af b2d8766 644a3af 1922d6a 644a3af 1922d6a 644a3af b2d8766 644a3af 78936f3 644a3af 78936f3 644a3af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from pathlib import Path
from PIL import Image
import streamlit as st
from huggingface_hub import InferenceClient, AsyncInferenceClient
import asyncio
import os
import random
import numpy as np
import yaml
import requests
HUGGINGFACE_API = os.environ.get("HF_TOKEN")
try:
with open("config.yaml", "r") as file:
credentials = yaml.safe_load(file)
except Exception as e:
st.error(f"Error al cargar el archivo de configuración: {e}")
credentials = {"username": "", "password": ""}
MAX_SEED = np.iinfo(np.int32).max
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)
def authenticate_user(username, password):
return username == credentials["username"] and password == credentials["password"]
async def gen(prompts, width, height, model_name, num_variants, prompt_checkbox, lora=None):
headers = {"Authorization": f"Bearer {HUGGINGFACE_API}"}
payload = {
"inputs": prompts,
"parameters": {
"width": width,
"height": height,
"num_inference_steps": 50,
"guidance_scale": 7.5
}
}
if lora:
payload["parameters"]["lora"] = lora
url = f"https://api-inference.huggingface.co/models/{model_name}"
response = requests.post(url, headers=headers, json=payload)
if response.status_code != 200:
raise Exception(f"Error: {response.status_code}, {response.text}")
return response.json()
def list_saved_images():
return sorted(DATA_PATH.glob("*.jpg"), key=os.path.getmtime, reverse=True)
def display_gallery():
st.header("Galería de Imágenes Guardadas")
images = list_saved_images()
if images:
cols = st.columns(8)
for i, image_file in enumerate(images):
with cols[i % 8]:
st.image(str(image_file), caption=image_file.name, use_column_width=True)
prompt = get_prompt_for_image(image_file.name)
st.write(prompt[:300])
if st.button(f"Borrar", key=f"delete_{i}_{image_file.name}"):
os.remove(image_file)
st.success("Imagen borrada")
display_gallery()
else:
st.info("No hay imágenes guardadas.")
def save_prompt(prompt):
with open(DATA_PATH / "prompts.txt", "a") as f:
f.write(prompt + "\n")
def run_async(func, *args):
return asyncio.run(func(*args))
async def improve_prompt(prompt):
try:
instructions = [
"With my idea create a vibrant description for a detailed txt2img prompt, 300 characters max.",
"With my idea write a creative and detailed text-to-image prompt in English, 300 characters max.",
"With my idea generate a descriptive and visual txt2img prompt in English, 300 characters max.",
"With my idea describe a photorealistic with illumination txt2img prompt in English, 300 characters max.",
"With my idea give a realistic and elegant txt2img prompt in English, 300 characters max.",
"With my idea conform a visually dynamic and surreal txt2img prompt in English, 300 characters max.",
"With my idea realize an artistic and cinematic txt2img prompt in English, 300 characters max.",
"With my idea make a narrative and immersive txt2img prompt in English, 300 characters max."
]
instruction = random.choice(instructions)
formatted_prompt = f"{prompt}: {instruction}"
response = llm_client.text_generation(formatted_prompt, max_new_tokens=100)
return response['generated_text'][:100] if 'generated_text' in response else response.strip()
except Exception as e:
return f"Error mejorando el prompt: {e}"
def save_image(image, file_name, prompt=None):
image_path = DATA_PATH / file_name
if image_path.exists():
st.warning(f"La imagen '{file_name}' ya existe en la galería. No se guardó.")
return None
else:
image.save(image_path, format="JPEG")
if prompt:
save_prompt(f"{file_name}: {prompt}")
return image_path
async def generate_image(prompt, width, height, seed, model_name):
if seed == -1:
seed = random.randint(0, MAX_SEED)
image = await client.text_to_image(prompt=prompt, height=height, width=width, model=model_name)
return image, seed
def get_prompt_for_image(image_name):
prompts = {}
try:
with open(DATA_PATH / "prompts.txt", "r") as f:
for line in f:
if line.startswith(image_name):
prompts[image_name] = line.split(": ", 1)[1].strip()
except FileNotFoundError:
return "No hay prompt asociado."
return prompts.get(image_name, "No hay prompt asociado.")
def login_form():
st.title("Iniciar Sesión")
username = st.text_input("Usuario", value="admin")
password = st.text_input("Contraseña", value="flux3x", type="password")
if st.button("Iniciar Sesión"):
if authenticate_user(username, password):
st.success("Autenticación exitosa.")
st.session_state['authenticated'] = True
else:
st.error("Credenciales incorrectas. Intenta de nuevo.")
async def generate_variations(prompt, num_variants, use_enhanced):
prompts = set()
while len(prompts) < num_variants:
if use_enhanced:
enhanced_prompt = await improve_prompt(prompt)
prompts.add(enhanced_prompt)
else:
prompts.add(prompt)
return list(prompts)
async def main():
st.set_page_config(layout="wide")
if 'authenticated' not in st.session_state or not st.session_state['authenticated']:
login_form()
return
st.title("Flux + Multiple Images")
prompt = st.sidebar.text_area("Descripción de la imagen", height=150, max_chars=500)
style_option = st.sidebar.selectbox("Selecciona un estilo",
["realistic", "photorealistic", "illustration",
"cartoon", "comic", "imaginative", "abstract"])
prompt_with_style = f"{prompt}, {style_option} style"
lora_option = st.sidebar.selectbox("Selecciona un LoRA",
["XLabs-AI/flux-RealismLora", "XLabs-AI/flux-RealismLora"])
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9", "1:1"])
prompt_checkbox = st.sidebar.checkbox("Prompt Enhancer")
model_option = st.sidebar.selectbox("Modelo",
["black-forest-labs/FLUX.1-schnell",
"black-forest-labs/FLUX.1-dev",
"enhanceaiteam/Flux-Uncensored-V2",
"enhanceaiteam/Flux-Uncensored"])
width, height = (360, 640) if format_option == "9:16" else (640, 360) if format_option == "16:9" else (640, 640)
if prompt_checkbox:
num_variants = st.sidebar.slider("Número de imágenes a generar", 1, 8, 1)
else:
num_variants = 1
model_name = model_option
if prompt_checkbox:
with st.spinner("Generando prompts mejorados..."):
prompts = await generate_variations(prompt_with_style, num_variants, True)
else:
prompts = [prompt_with_style]
if st.sidebar.button("Generar Imágenes"):
with st.spinner("Generando imágenes..."):
try:
results = await gen(prompts, width, height, model_name, num_variants, prompt_checkbox, lora_option)
st.session_state['generated_image_paths'] = results
for result in results:
st.image(result, caption="Imagen Generada")
except Exception as e:
st.error(f"Error al generar las imágenes: {str(e)}")
display_gallery()
if __name__ == "__main__":
asyncio.run(main())
|