kz919's picture
handle edge case where thinking is not invoked
5499441 verified
raw
history blame
7.14 kB
import gradio as gr
import openai
import time
import re
import os
# Available models
MODELS = [
"Meta-Llama-3.1-405B-Instruct",
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-8B-Instruct"
]
def create_client(api_key=None):
if api_key:
openai.api_key = api_key
openai.api_base = "https://api.sambanova.ai/v1" # Fixed Base URL
else:
openai.api_key = os.getenv("API_KEY")
openai.api_base = os.getenv("URL")
def chat_with_ai(message, chat_history, system_prompt):
messages = [
{"role": "system", "content": system_prompt},
]
for human, ai in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": ai})
messages.append({"role": "user", "content": message})
return messages
def respond(message, chat_history, model, system_prompt, thinking_budget, api_key):
print("Starting respond function...")
create_client(api_key) # Sets api_key and api_base globally
messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget))
start_time = time.time()
try:
print("Calling OpenAI API...")
completion = openai.ChatCompletion.create(
model=model,
messages=messages,
stream=False # Set to False for synchronous response
)
response = completion.choices[0].message['content']
thinking_time = time.time() - start_time
print("Response received from OpenAI API.")
return response, thinking_time
except Exception as e:
error_message = f"Error: {str(e)}"
print(error_message)
return error_message, time.time() - start_time
def parse_response(response):
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL)
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL)
answer = answer_match.group(1).strip() if answer_match else ""
reflection = reflection_match.group(1).strip() if reflection_match else ""
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL)
if answer is not "":
return answer, reflection, steps
else:
return response, "", ""
def process_chat(message, history, model, system_prompt, thinking_budget, api_key):
print(f"Received message: {message}")
if not api_key:
print("API key missing")
return history + [("System", "Please provide your API Key before starting the chat.")]
try:
formatted_system_prompt = system_prompt.format(budget=thinking_budget)
except KeyError as e:
error_msg = f"System prompt missing placeholder: {str(e)}"
print(error_msg)
return history + [("System", error_msg)]
response, thinking_time = respond(message, history, model, formatted_system_prompt, thinking_budget, api_key)
if response.startswith("Error:"):
return history + [("System", response)]
answer, reflection, steps = parse_response(response)
formatted_response = f"**Answer:** {answer}\n\n**Reflection:** {reflection}\n\n**Thinking Steps:**\n"
for i, step in enumerate(steps, 1):
formatted_response += f"**Step {i}:** {step}\n"
formatted_response += f"\n**Thinking time:** {thinking_time:.2f} s"
print(f"Appended response: {formatted_response}")
return history + [(message, formatted_response)]
# Define the default system prompt
default_system_prompt = """
You are a helpful assistant in normal conversation.
When given a problem to solve, you are an expert problem-solving assistant. Your task is to provide a detailed, step-by-step solution to a given question. Follow these instructions carefully:
1. Read the given question carefully and reset counter between <count> and </count> to {budget}
2. Generate a detailed, logical step-by-step solution.
3. Enclose each step of your solution within <step> and </step> tags.
4. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags <count> </count>, STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them.
5. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decides whether you need to return to the previous steps.
6. After completing the solution steps, reorganize and synthesize the steps into the final answer within <answer> and </answer> tags.
7. Provide a critical, honest and subjective self-evaluation of your reasoning process within <reflection> and </reflection> tags.
8. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags.
Example format:
<count> [starting budget] </count>
<step> [Content of step 1] </step>
<count> [remaining budget] </count>
<step> [Content of step 2] </step>
<reflection> [Evaluation of the steps so far] </reflection>
<reward> [Float between 0.0 and 1.0] </reward>
<count> [remaining budget] </count>
<step> [Content of step 3 or Content of some previous step] </step>
<count> [remaining budget] </count>
...
<step> [Content of final step] </step>
<count> [remaining budget] </count>
<answer> [Final Answer] </answer>
<reflection> [Evaluation of the solution] </reflection>
<reward> [Float between 0.0 and 1.0] </reward>
"""
with gr.Blocks() as demo:
gr.Markdown("# Llama3.1-Instruct-O1")
gr.Markdown("[Powered by Llama3.1 models through SN Cloud](https://sambanova.ai/fast-api?api_ref=907266)")
with gr.Row():
api_key = gr.Textbox(
label="API Key",
type="password",
placeholder="Enter your API key here"
)
with gr.Row():
model = gr.Dropdown(
choices=MODELS,
label="Select Model",
value=MODELS[0]
)
thinking_budget = gr.Slider(
minimum=1,
maximum=100,
value=10,
step=1,
label="Thinking Budget"
)
system_prompt = gr.Textbox(
label="System Prompt",
value=default_system_prompt,
lines=15,
interactive=True
)
with gr.Row():
msg = gr.Textbox(
label="Type your message here...",
placeholder="Enter your message..."
)
submit = gr.Button("Submit")
clear = gr.Button("Clear Chat")
chatbot = gr.Chatbot(
label="Chat History"
)
# Initialize chat history as a Gradio state
chat_history = gr.State([])
def handle_submit(message, history, model, system_prompt, thinking_budget, api_key):
updated_history = process_chat(message, history, model, system_prompt, thinking_budget, api_key)
return updated_history, ""
def handle_clear():
return [], ""
submit.click(
handle_submit,
inputs=[msg, chat_history, model, system_prompt, thinking_budget, api_key],
outputs=[chatbot, msg]
)
clear.click(
handle_clear,
inputs=None,
outputs=[chatbot, msg]
)
demo.launch()