|
import gradio as gr |
|
import openai |
|
import time |
|
import re |
|
import os |
|
|
|
|
|
MODELS = [ |
|
"Meta-Llama-3.1-405B-Instruct", |
|
"Meta-Llama-3.1-70B-Instruct", |
|
"Meta-Llama-3.1-8B-Instruct" |
|
] |
|
|
|
|
|
API_BASE = "https://api.sambanova.ai/v1" |
|
|
|
def create_client(api_key=None): |
|
"""Creates an OpenAI client instance.""" |
|
if api_key: |
|
openai.api_key = api_key |
|
else: |
|
openai.api_key = os.getenv("API_KEY") |
|
|
|
return openai.OpenAI(api_key=openai.api_key, base_url=API_BASE) |
|
|
|
def chat_with_ai(message, chat_history, system_prompt): |
|
"""Formats the chat history for the API call.""" |
|
messages = [{"role": "system", "content": system_prompt}] |
|
print(type(chat_history)) |
|
for tup in chat_history: |
|
print(type(tup)) |
|
first_key = list(tup.keys())[0] |
|
last_key = list(tup.keys())[-1] |
|
messages.append({"role": "user", "content": tup[first_key]}) |
|
messages.append({"role": "assistant", "content": tup[last_key]}) |
|
messages.append({"role": "user", "content": message}) |
|
return messages |
|
|
|
def respond(message, chat_history, model, system_prompt, thinking_budget, api_key): |
|
"""Sends the message to the API and gets the response.""" |
|
client = create_client(api_key) |
|
messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget)) |
|
start_time = time.time() |
|
|
|
try: |
|
completion = client.chat.completions.create(model=model, messages=messages) |
|
response = completion.choices[0].message.content |
|
thinking_time = time.time() - start_time |
|
return response, thinking_time |
|
except Exception as e: |
|
error_message = f"Error: {str(e)}" |
|
return error_message, time.time() - start_time |
|
|
|
def parse_response(response): |
|
"""Parses the response from the API.""" |
|
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL) |
|
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL) |
|
|
|
answer = answer_match.group(1).strip() if answer_match else "" |
|
reflection = reflection_match.group(1).strip() if reflection_match else "" |
|
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL) |
|
|
|
return answer, reflection, steps |
|
|
|
def generate(message, history, model, system_prompt, thinking_budget, api_key): |
|
"""Generates the chatbot response.""" |
|
response, thinking_time = respond(message, history, model, system_prompt, thinking_budget, api_key) |
|
|
|
if response.startswith("Error:"): |
|
return history + [({"role": "system", "content": response},)], "" |
|
|
|
answer, reflection, steps = parse_response(response) |
|
|
|
messages = [] |
|
messages.append({"role": "user", "content": message}) |
|
|
|
formatted_steps = [f"Step {i}: {step}" for i, step in enumerate(steps, 1)] |
|
all_steps = "\n".join(formatted_steps) + f"\n\nReflection: {reflection}" |
|
|
|
messages.append({"role": "assistant", "content": all_steps, "metadata": {"title": f"Thinking Time: {thinking_time:.2f} sec"}}) |
|
messages.append({"role": "assistant", "content": answer}) |
|
|
|
return history + messages, "" |
|
|
|
|
|
DEFAULT_SYSTEM_PROMPT = """ |
|
You are a helpful assistant in normal conversation. |
|
When given a problem to solve, you are an expert problem-solving assistant. |
|
Your task is to provide a detailed, step-by-step solution to a given question. |
|
Follow these instructions carefully: |
|
1. Read the given question carefully and reset counter between <count> and </count> to {budget} |
|
2. Generate a detailed, logical step-by-step solution. |
|
3. Enclose each step of your solution within <step> and </step> tags. |
|
4. You are allowed to use at most {budget} steps (starting budget), |
|
keep track of it by counting down within tags <count> </count>, |
|
STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them. |
|
5. Do a self-reflection when you are unsure about how to proceed, |
|
based on the self-reflection and reward, decides whether you need to return |
|
to the previous steps. |
|
6. After completing the solution steps, reorganize and synthesize the steps |
|
into the final answer within <answer> and </answer> tags. |
|
7. Provide a critical, honest and subjective self-evaluation of your reasoning |
|
process within <reflection> and </reflection> tags. |
|
8. Assign a quality score to your solution as a float between 0.0 (lowest |
|
quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags. |
|
Example format: |
|
<count> [starting budget] </count> |
|
<step> [Content of step 1] </step> |
|
<count> [remaining budget] </count> |
|
<step> [Content of step 2] </step> |
|
<reflection> [Evaluation of the steps so far] </reflection> |
|
<reward> [Float between 0.0 and 1.0] </reward> |
|
<count> [remaining budget] </count> |
|
<step> [Content of step 3 or Content of some previous step] </step> |
|
<count> [remaining budget] </count> |
|
... |
|
<step> [Content of final step] </step> |
|
<count> [remaining budget] </count> |
|
<answer> [Final Answer] </answer> (must give final answer in this format) |
|
<reflection> [Evaluation of the solution] </reflection> |
|
<reward> [Float between 0.0 and 1.0] </reward> |
|
""" |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Llama3.1-Instruct-O1") |
|
gr.Markdown("[Powered by Llama3.1 models through SN Cloud](https://sambanova.ai/fast-api?api_ref=907266)") |
|
|
|
with gr.Row(): |
|
api_key = gr.Textbox(label="API Key", type="password", placeholder="Enter your API key here") |
|
|
|
with gr.Row(): |
|
model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]) |
|
thinking_budget = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Thinking Budget", info="maximum times a model can think") |
|
|
|
chatbot = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", type="messages") |
|
|
|
msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...") |
|
|
|
gr.Button("Clear Chat").click(lambda: ([], ""), inputs=None, outputs=[chatbot, msg]) |
|
|
|
system_prompt = gr.Textbox(label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, lines=15, interactive=True) |
|
|
|
msg.submit(generate, inputs=[msg, chatbot, model, system_prompt, thinking_budget, api_key], outputs=[chatbot, msg]) |
|
|
|
demo.launch(share=True, show_api=False) |