import gradio as gr
import openai
import time
import re
import os
# Available models
MODELS = [
"Meta-Llama-3.1-405B-Instruct",
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-8B-Instruct"
]
def create_client(api_key):
openai.api_key = api_key
openai.api_base = "https://api.sambanova.ai/v1" # Fixed Base URL
def chat_with_ai(message, chat_history, system_prompt):
messages = [
{"role": "system", "content": system_prompt},
]
for human, ai in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": ai})
messages.append({"role": "user", "content": message})
return messages
def respond(message, chat_history, model, system_prompt, thinking_budget, api_key):
print("Starting respond function...")
create_client(api_key) # Sets api_key and api_base globally
messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget))
start_time = time.time()
try:
print("Calling OpenAI API...")
completion = openai.ChatCompletion.create(
model=model,
messages=messages,
stream=False # Set to False for synchronous response
)
response = completion.choices[0].message['content']
thinking_time = time.time() - start_time
print("Response received from OpenAI API.")
yield response, thinking_time
except Exception as e:
error_message = f"Error: {str(e)}"
print(error_message)
yield error_message, time.time() - start_time
def parse_response(response):
answer_match = re.search(r'(.*?)', response, re.DOTALL)
reflection_match = re.search(r'(.*?)', response, re.DOTALL)
answer = answer_match.group(1).strip() if answer_match else ""
reflection = reflection_match.group(1).strip() if reflection_match else ""
steps = re.findall(r'(.*?)', response, re.DOTALL)
return answer, reflection, steps
def process_chat(message, history, model, system_prompt, thinking_budget, api_key):
print(f"Received message: {message}")
if not api_key:
print("API key missing")
return "Please provide your API Key before starting the chat."
try:
formatted_system_prompt = system_prompt.format(budget=thinking_budget)
except KeyError as e:
error_msg = f"System prompt missing placeholder: {str(e)}"
print(error_msg)
return error_msg
full_response = ""
thinking_time = 0
for response, elapsed_time in respond(message, history, model, formatted_system_prompt, thinking_budget, api_key):
print(f"Received response: {response}")
full_response = response
thinking_time = elapsed_time
if full_response.startswith("Error:"):
return full_response
answer, reflection, steps = parse_response(full_response)
formatted_response = f"**Answer:** {answer}\n\n**Reflection:** {reflection}\n\n**Thinking Steps:**\n"
for i, step in enumerate(steps, 1):
formatted_response += f"**Step {i}:** {step}\n"
formatted_response += f"\n**Thinking time:** {thinking_time:.2f} s"
print(f"Appended response: {formatted_response}")
history.append((message, formatted_response))
return formatted_response
# Define the default system prompt
default_system_prompt = """
You are a helpful assistant in normal conversation.
When given a problem to solve, you are an expert problem-solving assistant. Your task is to provide a detailed, step-by-step solution to a given question. Follow these instructions carefully:
1. Read the given question carefully and reset counter between and to {budget}
2. Generate a detailed, logical step-by-step solution.
3. Enclose each step of your solution within and tags.
4. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags , STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them.
5. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decides whether you need to return to the previous steps.
6. After completing the solution steps, reorganize and synthesize the steps into the final answer within and tags.
7. Provide a critical, honest and subjective self-evaluation of your reasoning process within and tags.
8. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in and tags.
Example format:
[starting budget]
[Content of step 1]
[remaining budget]
[Content of step 2]
[Evaluation of the steps so far]
[Float between 0.0 and 1.0]
[remaining budget]
[Content of step 3 or Content of some previous step]
[remaining budget]
...
[Content of final step]
[remaining budget]
[Final Answer]
[Evaluation of the solution]
[Float between 0.0 and 1.0]
"""
with gr.Blocks() as demo:
gr.Markdown("# Llama3.1-Instruct-O1")
gr.Markdown("[Powered by Llama3.1 models through SN Cloud](https://sambanova.ai/fast-api?api_ref=907266)")
with gr.Row():
api_key = gr.Textbox(
label="API Key",
type="password",
placeholder="Enter your API key here"
)
with gr.Row():
model = gr.Dropdown(
choices=MODELS,
label="Select Model",
value=MODELS[0]
)
thinking_budget = gr.Slider(
minimum=1,
maximum=100,
value=10,
step=1,
label="Thinking Budget"
)
system_prompt = gr.Textbox(
label="System Prompt",
value=default_system_prompt,
lines=10
)
msg = gr.Textbox(
label="Type your message here...",
placeholder="Enter your message..."
)
submit = gr.Button("Submit")
clear = gr.Button("Clear Chat")
output = gr.Textbox(
label="Response",
lines=20,
interactive=False
)
# Initialize chat history
chat_history = []
def handle_submit(message, history, model, system_prompt, thinking_budget, api_key):
response = process_chat(message, history, model, system_prompt, thinking_budget, api_key)
return response
def handle_clear():
return ""
submit.click(
handle_submit,
inputs=[msg, gr.State(chat_history), model, system_prompt, thinking_budget, api_key],
outputs=output
)
clear.click(
lambda: "",
inputs=None,
outputs=output
)
demo.launch()