import gradio as gr from openai import OpenAI import time import re # Available models MODELS = [ "Meta-Llama-3.1-405B-Instruct", "Meta-Llama-3.1-70B-Instruct", "Meta-Llama-3.1-8B-Instruct" ] def create_client(api_key, base_url): return OpenAI( api_key=api_key, base_url=base_url ) def chat_with_ai(message, chat_history, system_prompt): messages = [ {"role": "system", "content": system_prompt}, ] for human, ai in chat_history: messages.append({"role": "user", "content": human}) messages.append({"role": "assistant", "content": ai}) messages.append({"role": "user", "content": message}) return messages def respond(message, chat_history, model, system_prompt, thinking_budget, api_key, base_url): client = create_client(api_key, base_url) messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget)) response = "" start_time = time.time() try: for chunk in client.chat.completions.create( model=model, messages=messages, stream=True ): content = chunk.choices[0].delta.content or "" response += content yield response, time.time() - start_time except Exception as e: yield f"Error: {str(e)}", time.time() - start_time def parse_response(response): answer_match = re.search(r'(.*?)', response, re.DOTALL) reflection_match = re.search(r'(.*?)', response, re.DOTALL) answer = answer_match.group(1).strip() if answer_match else "" reflection = reflection_match.group(1).strip() if reflection_match else "" steps = re.findall(r'(.*?)', response, re.DOTALL) return answer, reflection, steps def process_chat(message, history, model, system_prompt, thinking_budget, api_key, base_url): if not api_key or not base_url: history.append((message, "Please provide both API Key and Base URL before starting the chat.")) return history, history full_response = "" thinking_time = 0 for response, elapsed_time in respond(message, history, model, system_prompt, thinking_budget, api_key, base_url): full_response = response thinking_time = elapsed_time if full_response.startswith("Error:"): history.append((message, full_response)) return history, history answer, reflection, steps = parse_response(full_response) formatted_response = f"**Answer:** {answer}\n\n**Reflection:** {reflection}\n\n**Thinking Steps:**\n" for i, step in enumerate(steps, 1): formatted_response += f"**Step {i}:** {step}\n" formatted_response += f"\n**Thinking time:** {thinking_time:.2f} s" history.append((message, formatted_response)) return history, history with gr.Blocks() as demo: gr.Markdown("# Llama3.1-Instruct-O1") gr.Markdown("[Powered by Llama3.1 models through SN Cloud](https://sambanova.ai/fast-api?api_ref=907266)") with gr.Row(): api_key = gr.Textbox(label="API Key", type="password") base_url = gr.Textbox(label="Base URL", value="https://api.endpoints.anyscale.com/v1") with gr.Row(): model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]) thinking_budget = gr.Slider(minimum=1, maximum=100, value=1, step=1, label="Thinking Budget") system_prompt = gr.Textbox( label="System Prompt", value=""" You are a helpful assistant in normal conversation. When given a problem to solve, you are an expert problem-solving assistant. Your task is to provide a detailed, step-by-step solution to a given question. Follow these instructions carefully: 1. Read the given question carefully and reset counter between and to {budget} 2. Generate a detailed, logical step-by-step solution. 3. Enclose each step of your solution within and tags. 4. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags , STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them. 5. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decides whether you need to return to the previous steps. 6. After completing the solution steps, reorganize and synthesize the steps into the final answer within and tags. 7. Provide a critical, honest and subjective self-evaluation of your reasoning process within and tags. 8. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in and tags. Example format: [starting budget] [Content of step 1] [remaining budget] [Content of step 2] [Evaluation of the steps so far] [Float between 0.0 and 1.0] [remaining budget] [Content of step 3 or Content of some previous step] [remaining budget] ... [Content of final step] [remaining budget] [Final Answer] [Evaluation of the solution] [Float between 0.0 and 1.0] """, lines=10 ) chatbot_ui = gr.Chatbot() msg = gr.Textbox(label="Type your message here...") clear = gr.Button("Clear Chat") chat_history = gr.State([]) msg.submit( process_chat, # Use the renamed function [msg, chat_history, model, system_prompt, thinking_budget, api_key, base_url], [chatbot_ui, chat_history] ) clear.click(lambda: ([], []), None, [chatbot_ui, chat_history], queue=False) demo.launch()