Spaces:
Runtime error
Runtime error
changes to app and document_retrieval
Browse files- app.py +9 -5
- src/document_retrieval.py +4 -4
app.py
CHANGED
@@ -27,16 +27,20 @@ def handle_userinput(user_question, conversation_chain, history):
|
|
27 |
else:
|
28 |
return history, ""
|
29 |
|
30 |
-
def process_documents(files, collection_name, document_retrieval, vectorstore, conversation_chain,
|
31 |
try:
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
_, _, text_chunks = parse_doc_universal(doc=files)
|
34 |
print(len(text_chunks))
|
35 |
print(text_chunks[0])
|
36 |
embeddings = document_retrieval.load_embedding_model()
|
37 |
collection_id = str(uuid.uuid4())
|
38 |
collection_name = f"collection_{collection_id}"
|
39 |
-
vectorstore = document_retrieval.create_vector_store(text_chunks, embeddings, output_db=
|
40 |
document_retrieval.init_retriever(vectorstore)
|
41 |
conversation_chain = document_retrieval.get_qa_retrieval_chain()
|
42 |
return conversation_chain, vectorstore, document_retrieval, collection_name, "Complete! You can now ask questions."
|
@@ -57,7 +61,7 @@ with gr.Blocks() as demo:
|
|
57 |
|
58 |
gr.Markdown("Powered by LLama3.1-8B-Instruct on SambaNova Cloud. Get your API key [here](https://cloud.sambanova.ai/apis).")
|
59 |
|
60 |
-
|
61 |
|
62 |
# Step 1: Add PDF file
|
63 |
gr.Markdown("## 1️⃣ Upload PDF")
|
@@ -71,7 +75,7 @@ with gr.Blocks() as demo:
|
|
71 |
gr.Markdown(caution_text)
|
72 |
|
73 |
# Preprocessing events
|
74 |
-
process_btn.click(process_documents, inputs=[docs, collection_name, document_retrieval, vectorstore, conversation_chain], outputs=[conversation_chain, vectorstore, document_retrieval, collection_name, setup_output], concurrency_limit=20)
|
75 |
|
76 |
# Step 3: Chat with your data
|
77 |
gr.Markdown("## 3️⃣ Chat with your document")
|
|
|
27 |
else:
|
28 |
return history, ""
|
29 |
|
30 |
+
def process_documents(files, collection_name, document_retrieval, vectorstore, conversation_chain, api_key=None):
|
31 |
try:
|
32 |
+
if api_key:
|
33 |
+
sambanova_api_key = api_key
|
34 |
+
else:
|
35 |
+
sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY')
|
36 |
+
document_retrieval = DocumentRetrieval(sambanova_api_key)
|
37 |
_, _, text_chunks = parse_doc_universal(doc=files)
|
38 |
print(len(text_chunks))
|
39 |
print(text_chunks[0])
|
40 |
embeddings = document_retrieval.load_embedding_model()
|
41 |
collection_id = str(uuid.uuid4())
|
42 |
collection_name = f"collection_{collection_id}"
|
43 |
+
vectorstore = document_retrieval.create_vector_store(text_chunks, embeddings, output_db=None, collection_name=collection_name)
|
44 |
document_retrieval.init_retriever(vectorstore)
|
45 |
conversation_chain = document_retrieval.get_qa_retrieval_chain()
|
46 |
return conversation_chain, vectorstore, document_retrieval, collection_name, "Complete! You can now ask questions."
|
|
|
61 |
|
62 |
gr.Markdown("Powered by LLama3.1-8B-Instruct on SambaNova Cloud. Get your API key [here](https://cloud.sambanova.ai/apis).")
|
63 |
|
64 |
+
api_key = gr.Textbox(label="API Key", type="password", placeholder="(Optional) Enter your API key here for more availability")
|
65 |
|
66 |
# Step 1: Add PDF file
|
67 |
gr.Markdown("## 1️⃣ Upload PDF")
|
|
|
75 |
gr.Markdown(caution_text)
|
76 |
|
77 |
# Preprocessing events
|
78 |
+
process_btn.click(process_documents, inputs=[docs, collection_name, document_retrieval, vectorstore, conversation_chain, api_key], outputs=[conversation_chain, vectorstore, document_retrieval, collection_name, setup_output], concurrency_limit=20)
|
79 |
|
80 |
# Step 3: Chat with your data
|
81 |
gr.Markdown("## 3️⃣ Chat with your document")
|
src/document_retrieval.py
CHANGED
@@ -124,7 +124,7 @@ class RetrievalQAChain(Chain):
|
|
124 |
|
125 |
|
126 |
class DocumentRetrieval:
|
127 |
-
def __init__(self):
|
128 |
self.vectordb = VectorDb()
|
129 |
config_info = self.get_config_info()
|
130 |
self.api_info = config_info[0]
|
@@ -134,7 +134,7 @@ class DocumentRetrieval:
|
|
134 |
self.prompts = config_info[4]
|
135 |
self.prod_mode = config_info[5]
|
136 |
self.retriever = None
|
137 |
-
self.llm = self.set_llm()
|
138 |
|
139 |
def get_config_info(self):
|
140 |
"""
|
@@ -152,7 +152,7 @@ class DocumentRetrieval:
|
|
152 |
|
153 |
return api_info, llm_info, embedding_model_info, retrieval_info, prompts, prod_mode
|
154 |
|
155 |
-
def set_llm(self):
|
156 |
#if self.prod_mode:
|
157 |
# sambanova_api_key = st.session_state.SAMBANOVA_API_KEY
|
158 |
#else:
|
@@ -161,7 +161,7 @@ class DocumentRetrieval:
|
|
161 |
# else:
|
162 |
# sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY')
|
163 |
|
164 |
-
sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY')
|
165 |
|
166 |
llm = APIGateway.load_llm(
|
167 |
type=self.api_info,
|
|
|
124 |
|
125 |
|
126 |
class DocumentRetrieval:
|
127 |
+
def __init__(self, sambanova_api_key):
|
128 |
self.vectordb = VectorDb()
|
129 |
config_info = self.get_config_info()
|
130 |
self.api_info = config_info[0]
|
|
|
134 |
self.prompts = config_info[4]
|
135 |
self.prod_mode = config_info[5]
|
136 |
self.retriever = None
|
137 |
+
self.llm = self.set_llm(sambanova_api_key)
|
138 |
|
139 |
def get_config_info(self):
|
140 |
"""
|
|
|
152 |
|
153 |
return api_info, llm_info, embedding_model_info, retrieval_info, prompts, prod_mode
|
154 |
|
155 |
+
def set_llm(self, sambanova_api_key):
|
156 |
#if self.prod_mode:
|
157 |
# sambanova_api_key = st.session_state.SAMBANOVA_API_KEY
|
158 |
#else:
|
|
|
161 |
# else:
|
162 |
# sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY')
|
163 |
|
164 |
+
#sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY')
|
165 |
|
166 |
llm = APIGateway.load_llm(
|
167 |
type=self.api_info,
|