Samuel Mueller
more description, larger font
0a04eb5
raw
history blame
4.33 kB
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import gpytorch
import torch
import sys
import gpytorch
# We will use the simplest form of GP model, exact inference
class ExactGPModel(gpytorch.models.ExactGP):
def __init__(self, train_x, train_y, likelihood):
super(ExactGPModel, self).__init__(train_x, train_y, likelihood)
self.mean_module = gpytorch.means.ConstantMean()
self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
def forward(self, x):
mean_x = self.mean_module(x)
covar_x = self.covar_module(x)
return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
def get_model(x, y, hyperparameters):
likelihood = gpytorch.likelihoods.GaussianLikelihood(noise_constraint=gpytorch.constraints.GreaterThan(1.e-9))
model = ExactGPModel(x, y, likelihood)
model.likelihood.noise = torch.ones_like(model.likelihood.noise) * hyperparameters["noise"]
model.covar_module.outputscale = torch.ones_like(model.covar_module.outputscale) * hyperparameters["outputscale"]
model.covar_module.base_kernel.lengthscale = torch.ones_like(model.covar_module.base_kernel.lengthscale) * \
hyperparameters["lengthscale"]
return model, likelihood
excuse = "Please only specify numbers, x values should be in [0,1] and y values in [-1,1]."
excuse_max_examples = "This model is trained to work with up to 4 input points."
hyperparameters = {'noise': 1e-4, 'outputscale': 1., 'lengthscale': .1, 'fast_computations': (False,False,False)}
conf = .5
def mean_and_bounds_for_gp(x,y,test_xs):
gp_model, likelihood = get_model(x,y,hyperparameters)
gp_model.eval()
l = likelihood(gp_model(test_xs))
means = l.mean.squeeze()
varis = torch.diagonal(l.covariance_matrix.squeeze())
stds = varis.sqrt()
return means, means-stds, means+stds
def mean_and_bounds_for_pnf(x,y,test_xs, choice):
sys.path.append('prior-fitting/')
model = torch.load(f'onefeature_gp_ls.1_pnf_{choice}.pt')
logits = model((torch.cat([x,test_xs],0).unsqueeze(1),y.unsqueeze(1)),single_eval_pos=len(x))
bounds = model.criterion.quantile(logits,center_prob=.682).squeeze(1)
return model.criterion.mean(logits).squeeze(1), bounds[:,0], bounds[:,1]
def plot_w_conf_interval(ax_or_plt, x, m, lb, ub, color):
ax_or_plt.plot(x.squeeze(-1),m, color=color)
ax_or_plt.fill_between(x.squeeze(-1), lb, ub, alpha=.1, color=color)
@torch.no_grad()
def infer(table, choice):
vfunc = np.vectorize(lambda s: len(s))
non_empty_row_mask = (vfunc(table).sum(1) != 0)
table = table[non_empty_row_mask]
try:
table = table.astype(np.float32)
except ValueError:
return excuse, None
x = torch.tensor(table[:,0]).unsqueeze(1)
y = torch.tensor(table[:,1])
fig = plt.figure(figsize=(4,2),dpi=1000)
if len(x) > 4:
return excuse_max_examples, None
if (x<0.).any() or (x>1.).any() or (y<-1).any() or (y>1).any():
return excuse, None
plt.scatter(x,y)
test_xs = torch.linspace(0,1,100).unsqueeze(1)
plot_w_conf_interval(plt, test_xs, *mean_and_bounds_for_gp(x,y,test_xs), 'green')
plot_w_conf_interval(plt, test_xs, *mean_and_bounds_for_pnf(x,y,test_xs, choice), 'blue')
return '', plt.gcf()
iface = gr.Interface(fn=infer,
title='GP Posterior Approximation with Transformers',
description='''This is a demo of PFNs as we describe them in our recent paper (https://openreview.net/forum?id=KSugKcbNf9).
Lines represent means and shaded areas are the confidence interval (68.2% quantile). In green, we have the ground truth GP posterior and in blue we have our approximation.
We provide three models that are architecturally the same, but with different training budgets.
''',
inputs=[
gr.inputs.Dataframe(headers=["x", "y"], datatype=["number", "number"], row_count=2, type='numpy', default=[['.25','.1'],['.75','.4']]),
gr.inputs.Radio(['160K','800K','4M'], type="value", default='4M', label='Number of Sampled Datasets in Training (Training Costs)')
], outputs=["text","plot"])
iface.launch()