Spaces:
Sleeping
Sleeping
File size: 1,425 Bytes
63a82cf 1b41464 63a82cf 1b41464 d74e010 1b41464 63a82cf 1b41464 d74e010 1b41464 d74e010 1b41464 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
from transformers import pipeline
available_models = {
"Baseline": pipeline("text2text-generation", model="samzirbo/mt5.baseline"),
"Genered": pipeline("text2text-generation", model="samzirbo/mt5.gendered"),
"Balanced": pipeline("text2text-generation", model="samzirbo/mt5.balanced"),
"Gendered and Balanced": pipeline("text2text-generation", model="samzirbo/mt5.gendered_balanced")
}
def translate_text(model_name, lang_dir, gender, input_text):
model = available_models[model_name]
src, tgt = lang_dir.split(" -> ")
prompt = f"Translate {src} to {tgt} " + f"as a {gender} : " if gender and "gendered" in model_name else f"Translate {src} to {tgt} : "
inputs = prompt + input_text
print(inputs)
output_text = model(inputs, max_length=128)
return output_text[0]['generated_text']
model_dropdown = gr.Dropdown(choices=list(available_models.keys()), label="Select Model", value="Baseline")
lang_dropdown = gr.Dropdown(choices=["English -> Spanish", "Spanish -> English"], label="Language Direction", value="English -> Spanish")
gender_dropdown = gr.Dropdown(choices=["female", "male"], label="Select Gender", value=None)
iface = gr.Interface(fn=translate_text,
inputs=[model_dropdown, lang_dropdown, gender_dropdown, "text"],
outputs="text",
title="Translation Interface")
iface.launch() |