File size: 10,215 Bytes
9b43ccd
 
 
 
6d71260
9b43ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4928b3
9b43ccd
a00a8e9
 
9b43ccd
 
 
6d71260
 
 
9b43ccd
 
 
 
 
 
 
6d71260
 
9b43ccd
 
 
6d71260
 
9b43ccd
6d71260
9b43ccd
 
6d71260
 
9b43ccd
6d71260
9b43ccd
 
6d71260
9b43ccd
 
6d71260
9b43ccd
 
6d71260
 
 
9b43ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d71260
 
9b43ccd
6d71260
9b43ccd
 
6d71260
b4928b3
 
 
6d71260
9b43ccd
 
 
 
6d71260
 
9b43ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a741e24
 
9b43ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4928b3
9b43ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea31514
ce7b54d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import base64
import math
import os
import time
from functools import partial
from multiprocessing import Pool

import gradio as gr
import numpy as np
import pytube
import requests
from processing_whisper import WhisperPrePostProcessor
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.pipelines.audio_utils import ffmpeg_read


title = "Whisper JAX: The Fastest Whisper API ⚡️"

description = """Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v2) by OpenAI. It runs on JAX with a TPU v4-8 in the backend. Compared to PyTorch on an A100 GPU, it is over [**70x faster**](https://github.com/sanchit-gandhi/whisper-jax#benchmarks), making it the fastest Whisper API available.

Note that at peak times, you may find yourself in the queue for this demo. When you submit a request, your queue position will be shown in the top right-hand side of the demo pane. Once you reach the front of the queue, your audio file will be sent to the TPU and then transcribed, with the progress displayed through a progress bar. 

To skip the queue, you may wish to create your own inference endpoint, details for which can be found in the [Whisper JAX repository](https://github.com/sanchit-gandhi/whisper-jax#creating-an-endpoint).
"""

article = "Whisper large-v2 model by OpenAI. Backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face."

API_SEND_URL = os.getenv("API_SEND_URL")
API_FORWARD_URL = os.getenv("API_FORWARD_URL")

language_names = sorted(TO_LANGUAGE_CODE.keys())
CHUNK_LENGTH_S = 30
BATCH_SIZE = 16
NUM_PROC = 16
FILE_LIMIT_MB = 1000


def query(url, payload):
    response = requests.post(url, json=payload)
    return response.json(), response.status_code


def inference(batch_id, idx, task=None, return_timestamps=False):
    payload = {"batch_id": batch_id, "idx": idx, "task": task, "return_timestamps": return_timestamps}

    data, status_code = query(API_FORWARD_URL, payload)

    if status_code == 200:
        tokens = {"tokens": np.asarray(data["tokens"])}
        return tokens
    else:
        gr.Error(data["detail"])


def send_chunks(batch, batch_id):
    feature_shape = batch["input_features"].shape
    batch["input_features"] = base64.b64encode(batch["input_features"].tobytes()).decode()
    query(API_SEND_URL, {"batch": batch, "feature_shape": feature_shape, "batch_id": batch_id})


def forward(batch_id, idx, task=None, return_timestamps=False):
    outputs = inference(batch_id, idx, task, return_timestamps)
    return outputs


# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
    if seconds is not None:
        milliseconds = round(seconds * 1000.0)

        hours = milliseconds // 3_600_000
        milliseconds -= hours * 3_600_000

        minutes = milliseconds // 60_000
        milliseconds -= minutes * 60_000

        seconds = milliseconds // 1_000
        milliseconds -= seconds * 1_000

        hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
        return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
    else:
        # we have a malformed timestamp so just return it as is
        return seconds


if __name__ == "__main__":
    processor = WhisperPrePostProcessor.from_pretrained("openai/whisper-large-v2")
    stride_length_s = CHUNK_LENGTH_S / 6
    chunk_len = round(CHUNK_LENGTH_S * processor.feature_extractor.sampling_rate)
    stride_left = stride_right = round(stride_length_s * processor.feature_extractor.sampling_rate)
    step = chunk_len - stride_left - stride_right
    pool = Pool(NUM_PROC)

    def tqdm_generate(inputs: dict, task: str, return_timestamps: bool, progress: gr.Progress):
        inputs_len = inputs["array"].shape[0]
        all_chunk_start_batch_id = np.arange(0, inputs_len, step)
        num_samples = len(all_chunk_start_batch_id)
        num_batches = math.ceil(num_samples / BATCH_SIZE)
        dummy_batches = list(range(num_batches))

        dataloader = processor.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
        progress(0, desc="Sending audio to TPU...")
        batch_id = np.random.randint(
            1000000
        )  # TODO(SG): swap to an iterator - currently taking our 1 in a million chances
        pool.map(partial(send_chunks, batch_id=batch_id), dataloader)

        model_outputs = []
        start_time = time.time()
        # iterate over our chunked audio samples
        for idx in progress.tqdm(dummy_batches, desc="Transcribing..."):
            model_outputs.append(forward(batch_id, idx, task=task, return_timestamps=return_timestamps))
        runtime = time.time() - start_time

        post_processed = processor.postprocess(model_outputs, return_timestamps=return_timestamps)
        text = post_processed["text"]
        timestamps = post_processed.get("chunks")
        if timestamps is not None:
            timestamps = [
                f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
                for chunk in timestamps
            ]
            text = "\n".join(str(feature) for feature in timestamps)
        return text, runtime

    def transcribe_chunked_audio(inputs, task, return_timestamps, progress=gr.Progress()):
        progress(0, desc="Loading audio file...")
        if inputs is None:
            raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.")
        file_size_mb = os.stat(inputs).st_size / (1024 * 1024)
        if file_size_mb > FILE_LIMIT_MB:
            raise gr.Error(
                f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB."
            )

        with open(inputs, "rb") as f:
            inputs = f.read()

        inputs = ffmpeg_read(inputs, processor.feature_extractor.sampling_rate)
        inputs = {"array": inputs, "sampling_rate": processor.feature_extractor.sampling_rate}
        text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress)
        return text, runtime

    def _return_yt_html_embed(yt_url):
        video_id = yt_url.split("?v=")[-1]
        HTML_str = (
            f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
            " </center>"
        )
        return HTML_str

    def transcribe_youtube(yt_url, task, return_timestamps, progress=gr.Progress(), max_filesize=75.0):
        progress(0, desc="Loading audio file...")
        html_embed_str = _return_yt_html_embed(yt_url)
        try:
            yt = pytube.YouTube(yt_url)
            stream = yt.streams.filter(only_audio=True)[0]
        except:
            raise gr.Error("An error occurred while loading the YouTube video. Please try again.")

        if stream.filesize_mb > max_filesize:
            raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {stream.filesize_mb:.2f}MB.")

        stream.download(filename="audio.mp3")

        with open("audio.mp3", "rb") as f:
            inputs = f.read()

        inputs = ffmpeg_read(inputs, processor.feature_extractor.sampling_rate)
        inputs = {"array": inputs, "sampling_rate": processor.feature_extractor.sampling_rate}
        text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress)
        return html_embed_str, text, runtime

    microphone_chunked = gr.Interface(
        fn=transcribe_chunked_audio,
        inputs=[
            gr.inputs.Audio(source="microphone", optional=True, type="filepath"),
            gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
            gr.inputs.Checkbox(default=False, label="Return timestamps"),
        ],
        outputs=[
            gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
            gr.outputs.Textbox(label="Transcription Time (s)"),
        ],
        allow_flagging="never",
        title=title,
        description=description,
        article=article,
    )

    audio_chunked = gr.Interface(
        fn=transcribe_chunked_audio,
        inputs=[
            gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
            gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
            gr.inputs.Checkbox(default=False, label="Return timestamps"),
        ],
        outputs=[
            gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
            gr.outputs.Textbox(label="Transcription Time (s)"),
        ],
        allow_flagging="never",
        title=title,
        description=description,
        article=article,
    )

    youtube = gr.Interface(
        fn=transcribe_youtube,
        inputs=[
            gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
            gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
            gr.inputs.Checkbox(default=False, label="Return timestamps"),
        ],
        outputs=[
            gr.outputs.HTML(label="Video"),
            gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
            gr.outputs.Textbox(label="Transcription Time (s)"),
        ],
        allow_flagging="never",
        title=title,
        examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", "transcribe", False]],
        cache_examples=False,
        description=description,
        article=article,
    )

    demo = gr.Blocks()

    with demo:
        gr.TabbedInterface([microphone_chunked, audio_chunked, youtube], ["Microphone", "Audio File", "YouTube"])

    demo.queue(max_size=10)
    demo.launch(show_api=False, max_threads=10)