Spaces:
Running
on
Zero
Running
on
Zero
animikhaich
commited on
Commit
•
8a2882e
1
Parent(s):
d50bd1e
Added Audio Generator - Working, Tested
Browse files- .gitignore +4 -1
- engine/audio_generator.py +71 -112
.gitignore
CHANGED
@@ -167,4 +167,7 @@ cython_debug/
|
|
167 |
*.mp3
|
168 |
*.mp4
|
169 |
|
170 |
-
creds.json
|
|
|
|
|
|
|
|
167 |
*.mp3
|
168 |
*.mp4
|
169 |
|
170 |
+
creds.json
|
171 |
+
|
172 |
+
# Ignore the test file
|
173 |
+
test.py
|
engine/audio_generator.py
CHANGED
@@ -3,6 +3,7 @@ import warnings
|
|
3 |
|
4 |
warnings.simplefilter("ignore")
|
5 |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
|
6 |
import torch
|
7 |
import numpy as np
|
8 |
from audiocraft.models import musicgen
|
@@ -19,6 +20,8 @@ class GenerateAudio:
|
|
19 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
self.model_name = self.get_model_name(model)
|
21 |
self.model = self.get_model(self.model_name, self.device)
|
|
|
|
|
22 |
|
23 |
@staticmethod
|
24 |
def get_model(model, device):
|
@@ -36,127 +39,83 @@ class GenerateAudio:
|
|
36 |
if model_name.startswith("facebook/"):
|
37 |
return model_name
|
38 |
return f"facebook/{model_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
def generate_audio(self, prompts, duration=30):
|
41 |
try:
|
42 |
self.model.set_generation_params(duration=duration)
|
43 |
result = self.model.generate(prompts, progress=False)
|
44 |
-
result = result.
|
45 |
-
|
|
|
46 |
logging.info(
|
47 |
-
f"Generated audio with shape: {result.shape}, sample rate: {
|
48 |
)
|
49 |
-
|
|
|
50 |
except Exception as e:
|
51 |
logging.error(f"Failed to generate audio: {e}")
|
52 |
raise ValueError(f"Failed to generate audio: {e}")
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
# Parse command line arguments
|
58 |
-
parser = argparse.ArgumentParser(description="Music Generation Server")
|
59 |
-
parser.add_argument(
|
60 |
-
"--model", type=str, default="musicgen-stereo-small", help="Pretrained model name"
|
61 |
-
)
|
62 |
-
parser.add_argument(
|
63 |
-
"--device", type=str, default="cuda", help="Device to load the model on"
|
64 |
-
)
|
65 |
-
parser.add_argument(
|
66 |
-
"--duration", type=int, default=10, help="Duration of generated music in seconds"
|
67 |
-
)
|
68 |
-
parser.add_argument(
|
69 |
-
"--host", type=str, default="0.0.0.0", help="Host to run the server on"
|
70 |
-
)
|
71 |
-
parser.add_argument("--port", type=int, default=8000, help="Port to run the server on")
|
72 |
-
|
73 |
-
args = parser.parse_args()
|
74 |
-
|
75 |
-
|
76 |
-
# Initialize the FastAPI app
|
77 |
-
app = FastAPI()
|
78 |
-
|
79 |
-
# Build the model name based on the provided arguments
|
80 |
-
if args.model.startswith("facebook/"):
|
81 |
-
args.model_name = args.model
|
82 |
-
else:
|
83 |
-
args.model_name = f"facebook/{args.model}"
|
84 |
-
|
85 |
-
|
86 |
-
logging.info(f"Initializing Model Server with Settings: {args}")
|
87 |
-
|
88 |
-
# Load the model with the provided arguments
|
89 |
-
try:
|
90 |
-
musicgen_model = musicgen.MusicGen.get_pretrained(
|
91 |
-
args.model_name, device=args.device
|
92 |
-
)
|
93 |
-
model_loaded = True
|
94 |
-
logging.info(f"Model Loaded: {args.model_name}")
|
95 |
-
except Exception as e:
|
96 |
-
logging.error(f"Failed to load model: {e}")
|
97 |
-
musicgen_model = None
|
98 |
-
model_loaded = False
|
99 |
-
|
100 |
-
|
101 |
-
class MusicRequest(BaseModel):
|
102 |
-
prompts: List[str]
|
103 |
-
duration: Optional[int] = 10 # Default duration is 10 seconds if not provided
|
104 |
-
|
105 |
-
|
106 |
-
@app.get("/generate_music")
|
107 |
-
def generate_music(request: MusicRequest):
|
108 |
-
|
109 |
-
if not model_loaded:
|
110 |
-
raise HTTPException(status_code=500, detail="Model is not loaded.")
|
111 |
-
|
112 |
-
try:
|
113 |
-
logging.info(
|
114 |
-
f"Generating music with prompts: {request.prompts}, duration: {request.duration} seconds"
|
115 |
-
)
|
116 |
-
|
117 |
-
musicgen_model.set_generation_params(duration=request.duration)
|
118 |
-
result = musicgen_model.generate(request.prompts, progress=False)
|
119 |
-
result = result.squeeze().cpu().numpy().T
|
120 |
-
|
121 |
-
sample_rate = musicgen_model.sample_rate
|
122 |
-
|
123 |
-
logging.info(
|
124 |
-
f"Music generated with shape: {result.shape}, sample rate: {sample_rate} Hz"
|
125 |
-
)
|
126 |
-
|
127 |
-
buffer = io.BytesIO()
|
128 |
-
wav_write(buffer, sample_rate, result)
|
129 |
-
buffer.seek(0)
|
130 |
-
return StreamingResponse(buffer, media_type="audio/wav")
|
131 |
-
except Exception as e:
|
132 |
-
logging.error(f"Failed to generate music: {e}")
|
133 |
-
raise HTTPException(status_code=500, detail=str(e))
|
134 |
-
|
135 |
-
|
136 |
-
@app.get("/health")
|
137 |
-
def health_check():
|
138 |
-
cpu_usage = psutil.cpu_percent(interval=1)
|
139 |
-
ram_usage = psutil.virtual_memory().percent
|
140 |
-
stats = {
|
141 |
-
"server_running": True,
|
142 |
-
"model_loaded": model_loaded,
|
143 |
-
"cpu_usage_percent": cpu_usage,
|
144 |
-
"ram_usage_percent": ram_usage,
|
145 |
-
}
|
146 |
-
if args.device == "cuda" and torch.cuda.is_available():
|
147 |
-
gpu_memory_allocated = memory_allocated()
|
148 |
-
gpu_memory_reserved = memory_reserved()
|
149 |
-
stats.update(
|
150 |
-
{
|
151 |
-
"gpu_memory_allocated": gpu_memory_allocated,
|
152 |
-
"gpu_memory_reserved": gpu_memory_reserved,
|
153 |
-
}
|
154 |
-
)
|
155 |
-
|
156 |
-
logging.info(f"Health Check: {stats}")
|
157 |
-
|
158 |
-
return JSONResponse(content=stats)
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
if __name__ == "__main__":
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
warnings.simplefilter("ignore")
|
5 |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
6 |
+
import io
|
7 |
import torch
|
8 |
import numpy as np
|
9 |
from audiocraft.models import musicgen
|
|
|
20 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
self.model_name = self.get_model_name(model)
|
22 |
self.model = self.get_model(self.model_name, self.device)
|
23 |
+
self.generated_audio = None
|
24 |
+
self.sampling_rate = None
|
25 |
|
26 |
@staticmethod
|
27 |
def get_model(model, device):
|
|
|
39 |
if model_name.startswith("facebook/"):
|
40 |
return model_name
|
41 |
return f"facebook/{model_name}"
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def duration_sanity_check(duration):
|
45 |
+
if duration < 1:
|
46 |
+
logging.warning("Duration is less than 1 second. Setting duration to 1 second.")
|
47 |
+
return 1
|
48 |
+
elif duration > 30:
|
49 |
+
logging.warning("Duration is greater than 30 seconds. Setting duration to 30 seconds.")
|
50 |
+
return 30
|
51 |
+
return duration
|
52 |
+
|
53 |
+
@staticmethod
|
54 |
+
def prompts_sanity_check(prompts):
|
55 |
+
if isinstance(prompts, str):
|
56 |
+
prompts = [prompts]
|
57 |
+
elif not isinstance(prompts, list):
|
58 |
+
raise ValueError("Prompts should be a string or a list of strings.")
|
59 |
+
else:
|
60 |
+
for prompt in prompts:
|
61 |
+
if not isinstance(prompt, str):
|
62 |
+
raise ValueError("Prompts should be a string or a list of strings.")
|
63 |
+
if len(prompts) > 8: # Too many prompts will cause OOM error
|
64 |
+
raise ValueError("Maximum number of prompts allowed is 8.")
|
65 |
+
return prompts
|
66 |
+
|
67 |
+
|
68 |
+
def generate_audio(self, prompts, duration=10):
|
69 |
+
duration = self.duration_sanity_check(duration)
|
70 |
+
prompts = self.prompts_sanity_check(prompts)
|
71 |
|
|
|
72 |
try:
|
73 |
self.model.set_generation_params(duration=duration)
|
74 |
result = self.model.generate(prompts, progress=False)
|
75 |
+
self.result = result.cpu().numpy().T
|
76 |
+
self.result = self.result.transpose((2, 0, 1))
|
77 |
+
self.sampling_rate = self.model.sample_rate
|
78 |
logging.info(
|
79 |
+
f"Generated audio with shape: {self.result.shape}, sample rate: {self.sampling_rate} Hz"
|
80 |
)
|
81 |
+
print(f"Generated audio with shape: {self.result.shape}, sample rate: {self.sampling_rate} Hz")
|
82 |
+
return self.sampling_rate, self.result
|
83 |
except Exception as e:
|
84 |
logging.error(f"Failed to generate audio: {e}")
|
85 |
raise ValueError(f"Failed to generate audio: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
def save_audio(self, audio_dir="generated_audio"):
|
88 |
+
if self.result is None:
|
89 |
+
raise ValueError("Audio is not generated yet.")
|
90 |
+
if self.sampling_rate is None:
|
91 |
+
raise ValueError("Sampling rate is not available.")
|
92 |
+
|
93 |
+
paths = []
|
94 |
+
os.makedirs(audio_dir, exist_ok=True)
|
95 |
+
for i, audio in enumerate(self.result):
|
96 |
+
path = os.path.join(audio_dir, f"audio_{i}.wav")
|
97 |
+
wav_write(path, self.sampling_rate, audio)
|
98 |
+
paths.append(path)
|
99 |
+
return paths
|
100 |
+
|
101 |
+
def get_audio_buffer(self):
|
102 |
+
if self.result is None:
|
103 |
+
raise ValueError("Audio is not generated yet.")
|
104 |
+
if self.sampling_rate is None:
|
105 |
+
raise ValueError("Sampling rate is not available.")
|
106 |
+
|
107 |
+
buffers = []
|
108 |
+
for audio in self.result:
|
109 |
+
buffer = io.BytesIO()
|
110 |
+
wav_write(buffer, self.sampling_rate, audio)
|
111 |
+
buffer.seek(0)
|
112 |
+
buffers.append(buffer)
|
113 |
+
return buffers
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
+
audio_gen = GenerateAudio()
|
117 |
+
sample_rate, result = audio_gen.generate_audio(["A piano playing a jazz melody", "A guitar playing a rock riff", "A LoFi music for coding"], duration=10)
|
118 |
+
paths = audio_gen.save_audio()
|
119 |
+
print(f"Saved audio to: {paths}")
|
120 |
+
buffers = audio_gen.get_audio_buffer()
|
121 |
+
print(f"Audio buffers: {buffers}")
|