Spaces:
Running
Running
File size: 2,359 Bytes
d1ffd11 1b9d9ae 7702267 061fa24 438d719 061fa24 e70a1d4 061fa24 e70a1d4 5990ce9 7702267 4225814 7702267 4225814 7702267 4225814 7702267 4225814 7702267 5990ce9 061fa24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
import cv2
import insightface
from insightface.app import FaceAnalysis
def predict(image_in_video, image_in_img):
if image_in_video == None and image_in_img == None:
raise gr.Error("Please capture an image using the webcam or upload an image.")
image = image_in_video or image_in_img
return swapi(image)
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download='FALSE', download_zip= 'FALSE')
def swapi(imagen):
img = cv2.cvtColor(np.array(imagen), cv2.COLOR_RGB2BGR) # Convert image from RGB to BGR format
faces = app.get(img)
if not faces:
return img # If no faces are detected, return the original image
source_face = faces[0]
bbox = source_face['bbox']
bbox = [int(b) for b in bbox]
res = img.copy()
for face in faces:
res = swapper.get(res, face, source_face, paste_back=True)
return res[:, :, [2, 1, 0]] # Convert BGR to RGB for Gradio display
with gr.Blocks() as blocks:
gr.Markdown("### Capture Image Using WebCam or Upload")
with gr.Row():
with gr.Column():
image_or_file_opt = gr.Radio(["webcam", "file"], value="webcam",
label="How would you like to upload your image?")
image_in_video = gr.Image(source="webcam", type="filepath")
image_in_img = gr.Image(source="upload", visible=False, type="filepath")
# Update visibility based on selection
def toggle(choice):
if choice == "webcam":
return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
else:
return gr.update(visible=False, value=None), gr.update(visible=True, value=None)
image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt],
outputs=[image_in_video, image_in_img], queue=False, show_progress=False)
with gr.Column():
image_out = gr.Image()
run_btn = gr.Button("Run")
run_btn.click(fn=predict, inputs=[image_in_img, image_in_video], outputs=[image_out])
gr.Examples(fn=predict, examples=[], inputs=[image_in_img, image_in_video], outputs=[image_out])
blocks.queue()
blocks.launch() |