File size: 2,839 Bytes
d1ffd11
 
 
1b9d9ae
 
 
 
 
 
 
 
 
 
d1ffd11
 
9d84828
d1ffd11
 
 
 
 
 
 
 
 
 
 
 
 
5990ce9
7702267
 
 
 
 
5990ce9
270b511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5990ce9
7702267
4225814
 
 
7702267
 
4225814
7702267
 
 
 
 
 
 
 
 
 
 
4225814
 
7702267
4225814
7702267
 
5990ce9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
import numpy as np
import cv2
import numpy as np
import os
import glob
import cv2
import matplotlib.pyplot as plt
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image



# Load your trained model
#model = tf.keras.models.load_model('path_to_your_model.h5')

def predict_gender(image):
    # Convert image to format expected by your model & preprocess
    img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    img = cv2.resize(img, (224, 224))  # Example size
    img = img / 255.0  # Normalizing
    img = np.expand_dims(img, axis=0)

    prediction = model.predict(img)

    # Assuming binary classification with a single output neuron
    return "Male" if prediction[0] < 0.5 else "Female"


def predict(image_in_video, image_in_img):
    if image_in_video == None and image_in_img == None:
        raise gr.Error("Please capture an image using the webcam or upload an image.")
    image = image_in_video or image_in_img
    return image

app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download='FALSE', download_zip= 'FALSE')

img = ins_get_image('t1')
faces = app.get(img)

source_face = faces[0]
bbox = source_face['bbox']
bbox = [int(b) for b in bbox]

source_face = faces[0]
bbox = source_face['bbox']
bbox = [int(b) for b in bbox]

res = img.copy()
for face in faces:
  res = swapper.get(res, face, source_face, paste_back=True)

    

with gr.Blocks() as blocks:
    gr.Markdown("### Capture Image Using WebCam or Upload") 

    with gr.Row():
        with gr.Column():
            image_or_file_opt = gr.Radio(["webcam", "file"], value="webcam",
                                         label="How would you like to upload your image?")
            image_in_video = gr.Image(source="webcam", type="filepath")
            image_in_img = gr.Image(source="upload", visible=False, type="filepath")

            # Update visibility based on selection
            def toggle(choice):
                if choice == "webcam":
                    return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
                else:
                    return gr.update(visible=False, value=None), gr.update(visible=True, value=None)

            image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt],
                                     outputs=[image_in_video, image_in_img], queue=False, show_progress=False)
        with gr.Column():
            image_out = gr.Image()

    run_btn = gr.Button("Run")
    run_btn.click(fn=predict, inputs=[image_in_img, image_in_video], outputs=[image_out])
    gr.Examples(fn=predict, examples=[], inputs=[image_in_img, image_in_video], outputs=[image_out])

blocks.queue()
blocks.launch()