swap_face / app.py
sandrocalzada's picture
Update app.py
6d62efb
import numpy as np
import gradio as gr
import glob
import cv2
import matplotlib.pyplot as plt
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
def predict(image_in_video, image_in_img):
if image_in_video == None and image_in_img == None:
raise gr.Error("Please capture an image using the webcam or upload an image.")
image = image_in_video or image_in_img
return swapi(image)
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
swapper = insightface.model_zoo.get_model('inswapper_128.onnx')
def swapi(imagen):
# Use the uploaded image to extract features
img_user = cv2.imread(imagen)
faces_user = app.get(img_user)
# Use another image "background1" for modifications
img_background = cv2.imread('background1.jpg')
faces_background = app.get(img_background)
# Assuming the user image has a face and we are using its features
source_face = faces_user[0]
# Apply modifications to the "background" image
res = img_background.copy()
for face in faces_background:
res = swapper.get(res, face, source_face, paste_back=True)
# Convert from BGR to RGB
res_rgb = cv2.cvtColor(res, cv2.COLOR_BGR2RGB)
return res_rgb
with gr.Blocks() as blocks:
gr.Markdown("### Capture Image Using WebCam or Upload")
with gr.Row():
with gr.Column():
image_or_file_opt = gr.Radio(["webcam", "file"], value="webcam",
label="How would you like to upload your image?")
image_in_video = gr.Image(source="webcam", type="filepath")
image_in_img = gr.Image(source="upload", visible=False, type="filepath")
# Update visibility based on selection
def toggle(choice):
if choice == "webcam":
return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
else:
return gr.update(visible=False, value=None), gr.update(visible=True, value=None)
image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt],
outputs=[image_in_video, image_in_img], queue=False, show_progress=False)
with gr.Column():
image_out = gr.Image()
run_btn = gr.Button("Run")
run_btn.click(fn=predict, inputs=[image_in_img, image_in_video], outputs=[image_out])
gr.Examples(fn=predict, examples=[], inputs=[image_in_img, image_in_video], outputs=[image_out])
blocks.queue()
blocks.launch(debug=True)