import gradio as gr import cv2 import insightface from insightface.app import FaceAnalysis def predict(image_in_video, image_in_img): if image_in_video == None and image_in_img == None: raise gr.Error("Please capture an image using the webcam or upload an image.") image = image_in_video or image_in_img return swapi(image) app = FaceAnalysis(name='buffalo_l') app.prepare(ctx_id=0, det_size=(640, 640)) swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download='FALSE', download_zip= 'FALSE') def swapi(imagen): img = cv2.cvtColor(np.array(imagen), cv2.COLOR_RGB2BGR) # Convert image from RGB to BGR format faces = app.get(img) if not faces: return img # If no faces are detected, return the original image source_face = faces[0] bbox = source_face['bbox'] bbox = [int(b) for b in bbox] res = img.copy() for face in faces: res = swapper.get(res, face, source_face, paste_back=True) return res[:, :, [2, 1, 0]] # Convert BGR to RGB for Gradio display with gr.Blocks() as blocks: gr.Markdown("### Capture Image Using WebCam or Upload") with gr.Row(): with gr.Column(): image_or_file_opt = gr.Radio(["webcam", "file"], value="webcam", label="How would you like to upload your image?") image_in_video = gr.Image(source="webcam", type="filepath") image_in_img = gr.Image(source="upload", visible=False, type="filepath") # Update visibility based on selection def toggle(choice): if choice == "webcam": return gr.update(visible=True, value=None), gr.update(visible=False, value=None) else: return gr.update(visible=False, value=None), gr.update(visible=True, value=None) image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt], outputs=[image_in_video, image_in_img], queue=False, show_progress=False) with gr.Column(): image_out = gr.Image() run_btn = gr.Button("Run") run_btn.click(fn=predict, inputs=[image_in_img, image_in_video], outputs=[image_out]) gr.Examples(fn=predict, examples=[], inputs=[image_in_img, image_in_video], outputs=[image_out]) blocks.queue() blocks.launch()