import numpy as np import gradio as gr import glob import cv2 import matplotlib.pyplot as plt import insightface from insightface.app import FaceAnalysis from insightface.data import get_image as ins_get_image def predict(image_in_video, image_in_img): if image_in_video == None and image_in_img == None: raise gr.Error("Please capture an image using the webcam or upload an image.") image = image_in_video or image_in_img return swapi(image) app = FaceAnalysis(name='buffalo_l') app.prepare(ctx_id=0, det_size=(640, 640)) swapper = insightface.model_zoo.get_model('inswapper_128.onnx') def swapi(imagen): # Use the uploaded image to extract features img_user = cv2.imread(imagen) faces_user = app.get(img_user) # Use another image "background1" for modifications img_background = cv2.imread('background2.jpg') faces_background = app.get(img_background) # Assuming the user image has a face and we are using its features source_face = faces_user[0] # Apply modifications to the "background1" image res = img_background.copy() for face in faces_background: res = swapper.get(res, face, source_face, paste_back=True) # Convert from BGR to RGB res_rgb = cv2.cvtColor(res, cv2.COLOR_BGR2RGB) return res_rgb with gr.Blocks() as blocks: gr.Markdown("### Capture Image Using WebCam or Upload") with gr.Row(): with gr.Column(): image_or_file_opt = gr.Radio(["webcam", "file"], value="webcam", label="How would you like to upload your image?") image_in_video = gr.Image(source="webcam", type="filepath") image_in_img = gr.Image(source="upload", visible=False, type="filepath") # Update visibility based on selection def toggle(choice): if choice == "webcam": return gr.update(visible=True, value=None), gr.update(visible=False, value=None) else: return gr.update(visible=False, value=None), gr.update(visible=True, value=None) image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt], outputs=[image_in_video, image_in_img], queue=False, show_progress=False) with gr.Column(): image_out = gr.Image() run_btn = gr.Button("Run") run_btn.click(fn=predict, inputs=[image_in_img, image_in_video], outputs=[image_out]) gr.Examples(fn=predict, examples=[], inputs=[image_in_img, image_in_video], outputs=[image_out]) blocks.queue() blocks.launch(debug=True)