File size: 3,363 Bytes
dbe650f
 
 
 
 
765f5fb
dbe650f
 
 
 
 
 
 
91a3e4d
f606aad
dbe650f
 
 
 
 
4aee1e8
dbe650f
 
 
 
 
 
 
f606aad
 
 
 
dbe650f
f606aad
 
dbe650f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
721715f
b6eee7b
dbe650f
 
 
d483b43
dbe650f
d483b43
dbe650f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0301d01
 
 
 
dbe650f
 
 
d483b43
dbe650f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)


DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Loki 👁️</h1>
<p>This uses an open source Large Language Model called <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B"><b>Llama3-8b</b></a></p>
</div>
'''

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", torch_dtype=torch.float16).to('cuda')
terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

@spaces.GPU(duration=120)
def chat_llama3_8b(message: str, 
                   history: list, 
                   temperature: float, 
                   max_new_tokens: int
                   ) -> str:
    """
    Passes input, converts in tokens, generate's with ids and outputs
    the text out.
    """
    conversation = []
    for user, assistant in history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.             
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)
        

# Gradio block
chatbot=gr.Chatbot(height=600, label='Loki AI')

with gr.Blocks(fill_height=True) as demo:
    
    gr.Markdown(DESCRIPTION)
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0,
                      maximum=1, 
                      step=0.1,
                      value=0.95, 
                      label="Temperature", 
                      render=False),
            gr.Slider(minimum=128, 
                      maximum=4096,
                      step=1,
                      value=512, 
                      label="Max new tokens", 
                      render=False ),
            ],
        examples=[
            ["Make a poem of batman inside willy wonka"],
            ["How can you a burrito with just flour?"],
            ["How was saturn formed in 3 sentences"],
            ["How does the frontal lobe effect playing soccer"],
            ],
        cache_examples=False,
                     )
        
if __name__ == "__main__":
    demo.launch()