|
import torch |
|
import gradio as gr |
|
from transformers import TextIteratorStreamer, AutoProcessor, LlavaForConditionalGeneration |
|
from PIL import Image |
|
from threading import Thread |
|
import spaces |
|
import accelerate |
|
import time |
|
|
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style="text-align: center;">Krypton π</h1> |
|
<p>This uses an Open Source model from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p> |
|
</div> |
|
''' |
|
|
|
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers" |
|
model = LlavaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True |
|
) |
|
|
|
model.to('cuda') |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
|
|
model.generation_config.eos_token_id = processor.tokenizer.eos_token_id |
|
|
|
@spaces.GPU |
|
def bot_streaming(message, history): |
|
print(message) |
|
if message["files"]: |
|
|
|
if type(message["files"][-1]) == dict: |
|
image = message["files"][-1]["path"] |
|
else: |
|
image = message["files"][-1] |
|
else: |
|
|
|
|
|
for hist in history: |
|
if type(hist[0]) == tuple: |
|
image = hist[0][0] |
|
try: |
|
if image is None: |
|
|
|
gr.Error("You need to upload an image for LLaVA to work.") |
|
except NameError: |
|
|
|
gr.Error("You need to upload an image for LLaVA to work.") |
|
|
|
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" |
|
|
|
image = Image.open(image) |
|
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) |
|
|
|
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True}) |
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" |
|
|
|
|
|
buffer = "" |
|
time.sleep(0.5) |
|
for new_text in streamer: |
|
|
|
if "<|eot_id|>" in new_text: |
|
new_text = new_text.split("<|eot_id|>")[0] |
|
buffer += new_text |
|
|
|
|
|
generated_text_without_prompt = buffer |
|
|
|
time.sleep(0.06) |
|
|
|
yield generated_text_without_prompt |
|
|
|
|
|
chatbot = gr.Chatbot(height=600, label="Krypt AI") |
|
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter your question or upload an image.", show_label=False) |
|
|
|
with gr.Blocks(fill_height=True) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.ChatInterface( |
|
fn=bot_streaming, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
multimodal=True, |
|
textbox=chat_input, |
|
) |
|
|
|
demo.queue(api_open=False) |
|
demo.launch(show_api=False, share=False) |