placed processor tokenizer
Browse files
app.py
CHANGED
@@ -19,107 +19,50 @@ model = LlavaForConditionalGeneration.from_pretrained(
|
|
19 |
model_id,
|
20 |
torch_dtype=torch.float16,
|
21 |
low_cpu_mem_usage=True
|
22 |
-
)
|
23 |
|
24 |
processor = AutoProcessor.from_pretrained(model_id)
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
@spaces.GPU(duration=120)
|
29 |
-
def krypton(input,
|
30 |
-
history):
|
31 |
-
"""
|
32 |
-
Recieves inputs (prompts with images if they were added),
|
33 |
-
the image is formated for pil and prompt is formated for the model,
|
34 |
-
to place it's output to the user, these prompts and images are passed in
|
35 |
-
the processor and generation of the model, than the output is decoded from the processor,
|
36 |
-
onto the UI.
|
37 |
-
"""
|
38 |
if input["files"]:
|
39 |
-
if
|
40 |
-
image = input["files"][-1]["path"]
|
41 |
-
else:
|
42 |
-
image = input["files"][-1]
|
43 |
else:
|
44 |
-
|
45 |
-
# kept inside in tuples, the last one
|
46 |
for hist in history:
|
47 |
-
if
|
48 |
image = hist[0][0]
|
49 |
-
try:
|
50 |
-
if image is None:
|
51 |
-
gr.Error("You need to upload an image please for krypton to work.")
|
52 |
-
except NameError:
|
53 |
-
# Image is not defined at all
|
54 |
-
gr.Error("Uplaod an image for Krypton to work")
|
55 |
-
|
56 |
-
prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\n{input['text']}<|eot_id|>"
|
57 |
-
"<|start_header_id|>assistant<|end_header_id|>\n\n")
|
58 |
|
|
|
|
|
|
|
|
|
|
|
59 |
image = Image.open(image)
|
60 |
-
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|
61 |
-
|
62 |
# Streamer
|
63 |
-
streamer = TextIteratorStreamer(processor,
|
64 |
-
|
65 |
# Generation kwargs
|
66 |
generation_kwargs = dict(
|
67 |
-
inputs=inputs,
|
|
|
68 |
streamer=streamer,
|
69 |
max_new_tokens=1024,
|
70 |
do_sample=False
|
71 |
)
|
72 |
-
|
73 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
74 |
thread.start()
|
75 |
-
|
76 |
buffer = ""
|
77 |
time.sleep(0.5)
|
78 |
for new_text in streamer:
|
79 |
-
# find <|eot_id|> and remove it from the new_text
|
80 |
-
if "<|eot_id|>" in new_text:
|
81 |
-
new_text = new_text.split("<|eot_id|>")[0]
|
82 |
buffer += new_text
|
83 |
-
|
84 |
-
# generated_text_without_prompt = buffer[len(text_prompt):]
|
85 |
generated_text_without_prompt = buffer
|
86 |
-
# print(generated_text_without_prompt)
|
87 |
time.sleep(0.06)
|
88 |
-
|
89 |
-
yield generated_text_without_prompt
|
90 |
-
|
91 |
-
chatbot=gr.Chatbot(height=600, label="Krypt AI")
|
92 |
-
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter your question or upload an image.", show_label=False)
|
93 |
-
with gr.Blocks(fill_height=True) as demo:
|
94 |
-
gr.Markdown(DESCRIPTION)
|
95 |
-
gr.ChatInterface(
|
96 |
-
fn=krypton,
|
97 |
-
chatbot=chatbot,
|
98 |
-
fill_height=True,
|
99 |
-
# additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False),
|
100 |
-
# additional_inputs=[
|
101 |
-
# gr.Slider(minimum=20,
|
102 |
-
# maximum=80,
|
103 |
-
# step=1,
|
104 |
-
# value=50,
|
105 |
-
# label="Max New Tokens",
|
106 |
-
# render=False),
|
107 |
-
# gr.Slider(minimum=0.0,
|
108 |
-
# maximum=1.0,
|
109 |
-
# step=0.1,
|
110 |
-
# value=0.7,
|
111 |
-
# label="Temperature",
|
112 |
-
# render=False),
|
113 |
-
# gr.Slider(minimum=1,
|
114 |
-
# maximum=12,
|
115 |
-
# step=1,
|
116 |
-
# value=5,
|
117 |
-
# label="Number of Beams",
|
118 |
-
# render=False),
|
119 |
-
# ],
|
120 |
-
multimodal=True,
|
121 |
-
textbox=chat_input,
|
122 |
-
)
|
123 |
-
|
124 |
-
demo.queue(api_open=False)
|
125 |
-
demo.launch(show_api=False, share=False)
|
|
|
19 |
model_id,
|
20 |
torch_dtype=torch.float16,
|
21 |
low_cpu_mem_usage=True
|
22 |
+
)
|
23 |
|
24 |
processor = AutoProcessor.from_pretrained(model_id)
|
25 |
|
26 |
+
# Confirming and setting the eos_token_id (if necessary)
|
27 |
+
model.generation_config.eos_token_id = processor.tokenizer.eos_token_id
|
28 |
|
29 |
@spaces.GPU(duration=120)
|
30 |
+
def krypton(input, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if input["files"]:
|
32 |
+
image = input["files"][-1]["path"] if isinstance(input["files"][-1], dict) else input["files"][-1]
|
|
|
|
|
|
|
33 |
else:
|
34 |
+
image = None
|
|
|
35 |
for hist in history:
|
36 |
+
if isinstance(hist[0], tuple):
|
37 |
image = hist[0][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
if not image:
|
40 |
+
gr.Error("You need to upload an image for Krypton to work.")
|
41 |
+
return
|
42 |
+
|
43 |
+
prompt = f"user\n\n<image>\n{input['text']}\nassistant\n\n"
|
44 |
image = Image.open(image)
|
45 |
+
inputs = processor(prompt, images=image, return_tensors='pt').to(0, torch.float16)
|
46 |
+
|
47 |
# Streamer
|
48 |
+
streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=False, skip_prompt=True)
|
49 |
+
|
50 |
# Generation kwargs
|
51 |
generation_kwargs = dict(
|
52 |
+
inputs=inputs['input_ids'],
|
53 |
+
attention_mask=inputs['attention_mask'],
|
54 |
streamer=streamer,
|
55 |
max_new_tokens=1024,
|
56 |
do_sample=False
|
57 |
)
|
58 |
+
|
59 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
60 |
thread.start()
|
61 |
+
|
62 |
buffer = ""
|
63 |
time.sleep(0.5)
|
64 |
for new_text in streamer:
|
|
|
|
|
|
|
65 |
buffer += new_text
|
|
|
|
|
66 |
generated_text_without_prompt = buffer
|
|
|
67 |
time.sleep(0.06)
|
68 |
+
yield generated_text_without_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|