import torch
import gradio as gr
from transformers import TextIteratorStreamer, AutoProcessor, LlavaForConditionalGeneration
from PIL import Image
from threading import Thread
import spaces
import accelerate
import time
DESCRIPTION = '''
'''
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
model.to('cuda')
processor = AutoProcessor.from_pretrained(model_id)
# Confirming and setting the eos_token_id (if necessary)
model.generation_config.eos_token_id = processor.tokenizer.eos_token_id
@spaces.GPU
def bot_streaming(message, history):
print(message)
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"prompt: {prompt}")
image = Image.open(image)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"text_prompt: {text_prompt}")
buffer = ""
time.sleep(0.5)
for new_text in streamer:
# find <|eot_id|> and remove it from the new_text
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
# generated_text_without_prompt = buffer[len(text_prompt):]
generated_text_without_prompt = buffer
# print(generated_text_without_prompt)
time.sleep(0.06)
# print(f"new_text: {generated_text_without_prompt}")
yield generated_text_without_prompt
chatbot = gr.Chatbot(height=600, label="Krypt AI")
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter your question or upload an image.", show_label=False)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=krypton,
chatbot=chatbot,
fill_height=True,
multimodal=True,
textbox=chat_input,
)
demo.queue(api_open=False)
demo.launch(show_api=False, share=False)