from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation from torch import nn import numpy as np import matplotlib.pyplot as plt from palette import ade_palette import gradio as gr def seg(image): ## first resize the image !! image.resize((200,200)) feature_extractor = AutoFeatureExtractor.from_pretrained("nvidia/mit-b0") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b0") print(model) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) ## The model outputs logits of shape (batch_size, num_labels, height/4, width/4). # We first rescale the logits to match the original size of the image using # "bilinear interpolation". Next, we perform an argmax on the class dimension, # and we create a color map which we draw over the image. # First, rescale logits to original image size logits = nn.functional.interpolate(outputs.logits.detach().cpu(), size=image.size[::-1], # (height, width) mode='bilinear', align_corners=False) # Second, apply argmax on the class dimension seg = logits.argmax(dim=1)[0] color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3 palette = np.array(ade_palette()) for label, color in enumerate(palette): color_seg[seg == label, :] = color # Convert to BGR color_seg = color_seg[..., ::-1] img = np.array(image) * 0.5 + color_seg * 0.5 img = img.astype(np.uint8) return plt.imshow(img) iface = gr.Interface(fn=seg, inputs=gr.inputs.Image(type='pil'), outputs=gr.outputs.Image('numpy',True)) iface.launch()