Spaces:
Running
Running
File size: 4,475 Bytes
ceb472c a083558 4189f9e 8993dbb 4189f9e ceb472c bd2d4fa 4fbd4b0 c4835d8 4189f9e b23bba4 a083558 b23bba4 a482456 cb2c31d a083558 a482456 bc1f72a 98ddae8 d6148e1 98ddae8 f27000a 8b4c4dc 115ec5c 8b4c4dc 304ffe0 b23bba4 a083558 b71619b 4d4ea35 a083558 b23bba4 f0ff9a3 b23bba4 f0ff9a3 b23bba4 a083558 f0ff9a3 b23bba4 eb4bd74 b23bba4 eb800fb 2988cff 4d4ea35 6ff171e eb800fb 855a94a ceb472c b23bba4 4d4ea35 b23bba4 6ff171e b23bba4 2988cff b23bba4 6ff171e 855a94a 60949e3 227827f 60949e3 227827f 8448a0a 9a02618 60949e3 4fbd4b0 e659e75 9a02618 e659e75 60949e3 aa87ec6 60949e3 e37c55c c4835d8 8f87f71 c4835d8 2988cff 4fbd4b0 a083558 4fbd4b0 c4835d8 4fbd4b0 8f87f71 b71619b a083558 514097e 8f87f71 c4835d8 60949e3 2e68462 60949e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
// IMPORT LIBRARIES TOOLS
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
// skip local model check
env.allowLocalModels = false;
// GLOBAL VARIABLES
let PREPROMPT = `Please complete the phrase and fill in any [MASK]: `
let PROMPT_INPUT = `The woman has a job as a...` // a field for writing or changing a text value
let pField
let outText
// RUN TEXT-GEN MODEL
async function textGenTask(pre, prompt){
console.log('text-gen task initiated')
// preprompt not working, fix later if we do chat templates
// let INPUT = pre + prompt
let INPUT = prompt
// PICK MODEL
let MODEL = 'Xenova/llama2.c-stories15M'
// const = modelsList = ['Xenova/LaMini-Cerebras-256M', 'Xenova/TinyLlama-1.1B-Chat-v1.0', 'Xenova/distilgpt2', 'Xenova/bloom-560m']
const pipe = await pipeline('text-generation', MODEL)
// RUN INPUT THROUGH MODEL,
var out = await pipe(INPUT, { max_new_tokens: 60, top_k: 90, repetition_penalty: 1.5 })
// setting hyperparameters
// max_new_tokens: 256, top_k: 50, temperature: 0.7, do_sample: true, no_repeat_ngram_size: 2,
console.log(await out)
console.log('text-gen task completed')
// PARSE RESULTS as a list of outputs, two different ways depending on the model
let OUTPUT_LIST = [] // a blank array to store the results from the model
// parsing of output
await out.forEach(o => {
console.log(o)
OUTPUT_LIST.push(o.generated_text)
})
// alternate format for parsing, for chat model type
// await out.choices.forEach(o => {
// console.log(o)
// OUTPUT_LIST.push(o.message.content)
// })
console.log(OUTPUT_LIST)
console.log('text-gen parsing complete')
return await OUTPUT_LIST
// return await out
}
// RUN FILL-IN MODEL
async function fillInTask(input){
console.log('fill-in task initiated')
const pipe = await pipeline('fill-mask', 'Xenova/bert-base-uncased');
var out = await pipe(input);
console.log(await out) // yields { score, sequence, token, token_str } for each result
let OUTPUT_LIST = [] // a blank array to store the results from the model
// parsing of output
await out.forEach(o => {
console.log(o) // yields { score, sequence, token, token_str } for each result
OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list
})
console.log(await OUTPUT_LIST)
console.log('fill-in task completed')
// return await out
return await OUTPUT_LIST
}
//// p5.js Instance
new p5(function (p5){
p5.setup = function(){
p5.noCanvas()
console.log('p5 instance loaded')
makeTextDisplay()
makeFields()
makeButtons()
}
p5.draw = function(){
//
}
function makeTextDisplay(){
let title = p5.createElement('h1','p5.js Critical AI Prompt Battle')
let intro = p5.createP(`This tool lets you explore several AI prompts results at once.`)
p5.createP(`Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [Tutorial & extra info][TO-DO][XXX]`)
}
function makeFields(){
pField = p5.createInput(PROMPT_INPUT) // turns the string into an input; now access the text via PROMPT_INPUT.value()
pField.size(700)
pField.attribute('label', `Write a text prompt with one [MASK] that the model will fill in.`)
p5.createP(pField.attribute('label'))
pField.addClass("prompt")
}
function makeButtons(){
let submitButton = p5.createButton("SUBMIT")
submitButton.size(170)
submitButton.class('submit')
submitButton.mousePressed(displayResults)
// also make results placeholder
let outHeader = p5.createElement('h3',"Results")
outText = p5.createP('').id('results')
}
async function displayResults(){
console.log('submitButton pressed')
// insert waiting dots into results space of interface
outText.html('...', false)
PROMPT_INPUT = pField.value() // grab update to the prompt if it's been changed
console.log("latest prompt: ", PROMPT_INPUT)
// call the function that runs the model for the task of your choice here
// make sure to use the PROMPT_INPUT as a parameter, or also the PREPROMPT if valid for that task
let outs = await textGenTask(PREPROMPT, PROMPT_INPUT)
console.log(outs)
// insert the model outputs into the paragraph
await outText.html(outs, false) // false replaces text instead of appends??
}
});
|