p5tutorial2 / sketch.js
sarahciston's picture
only params to control length
a1e1d61 verified
raw
history blame
4.09 kB
// IMPORT LIBRARIES TOOLS
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
// skip local model check
env.allowLocalModels = false;
// GLOBAL VARIABLES
let PROMPT_INPUT = `The woman has a job as a...` // a field for writing or changing a text value
let pField
// RUN TEXT-GEN MODEL
async function textGenTask(input){
console.log('text-gen task initiated')
const pipe = await pipeline('text-generation', 'Xenova/LaMini-Cerebras-256M')
var out = await pipe(input, {
// temperature: 2,
// no_repeat_ngram_size: 2,
// num_beams: 2,
// num_return_sequences: 2,
// repetition_penalty: 2,
// min_new_tokens: 100,
min_new_tokens: 50,
max_new_tokens: 200
})
console.log(await out)
console.log('text-gen task completed')
let OUTPUT_LIST = [] // a blank array to store the results from the model
// parsing of output
await out.forEach(o => {
console.log(o)
OUTPUT_LIST.push(o.generated_text)
})
console.log(OUTPUT_LIST)
console.log('text-gen parsing complete')
return await OUTPUT_LIST
// return await out
}
// RUN FILL-IN MODEL
async function fillInTask(input){
console.log('fill-in task initiated')
const pipe = await pipeline('fill-mask', 'Xenova/bert-base-uncased');
var out = await pipe(input);
console.log(await out) // yields { score, sequence, token, token_str } for each result
let OUTPUT_LIST = [] // a blank array to store the results from the model
// parsing of output
await out.forEach(o => {
console.log(o) // yields { score, sequence, token, token_str } for each result
OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list
})
console.log(await OUTPUT_LIST)
// displayResults(await OUTPUT_LIST)
console.log('fill-in task completed')
// return await out
return await OUTPUT_LIST
}
// PROCESS MODEL OUTPUT
// a generic function to pass in different model task functions
async function getOutputs(task){
let output = await task
await output.forEach(o => {
OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list
})
console.log(OUTPUT_LIST)
return await OUTPUT_LIST
}
// await getOutputs(fillInTask()) // getOutputs will later connect to the interface to display results
//// p5.js Instance
new p5(function (p5){
p5.setup = function(){
p5.noCanvas()
console.log('p5 instance loaded')
makeTextDisplay()
makeFields()
makeButtons()
}
p5.draw = function(){
//
}
function makeTextDisplay(){
let title = p5.createElement('h1','p5.js Critical AI Prompt Battle')
let intro = p5.createP(`This tool lets you explore several AI prompts results at once.`)
p5.createP(`Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [Tutorial & extra info][TO-DO][XXX]`)
}
function makeFields(){
pField = p5.createInput(PROMPT_INPUT) // turns the string into an input; now access the text via PROMPT_INPUT.value()
pField.size(700)
pField.attribute('label', `Write a text prompt with one [MASK] that the model will fill in.`)
p5.createP(pField.attribute('label'))
pField.addClass("prompt")
// pField.value(PROMPT_INPUT)
// console.log(pField.value())
}
function makeButtons(){
let submitButton = p5.createButton("SUBMIT")
submitButton.size(170)
submitButton.class('submit')
submitButton.mousePressed(displayResults)
let outHeader = p5.createElement('h3',"Results")
}
async function displayResults(){
console.log('displayed, pressed')
PROMPT_INPUT = pField.value() // updates prompt if it's changed
console.log("latest prompt: ", PROMPT_INPUT)
// let fillIn = await fillInTask(PROMPT_INPUT)
// let outs = await getOutputs(fillIn)
let outs = await textGenTask(PROMPT_INPUT)
console.log(outs)
// text = str(outs)
let outText = p5.createP('')
await outText.html(outs) // true appends text instead of replaces
}
});