// IMPORT LIBRARIES TOOLS
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.10.1'; //HF transformers;
import { Client } from 'https://cdn.jsdelivr.net/npm/@gradio/client/dist/index.min.js' // "@gradio/client";
// skip local model check
env.allowLocalModels = false;
// GLOBAL VARIABLES
var promptArray = []
var PREPROMPT = `Please continue each sentence, filling in [MASK] with your own words:`
var PROMPT_INPUT = `` // a field for writing or changing a text value
var promptField // an html element to hold the prompt
var outText, outPics, outInfo // html elements to hold the results
var blanksArray = [] // an empty list to store all the variables we enter to modify the prompt
// e.g. ["woman", "man", "non-binary person"]
// // RUN IMAGE CAPTIONER //// W-I-P
// async function captionTask(prompt){
// // PICK MODEL
// let MODEL = 'Xenova/vit-gpt2-image-captioning'
// const pipe = await pipeline("image-to-text", MODEL)
// const out = await pipe(prompt)
// out = JSON.stringify(out, null, 2)
// }
// GENERIC API CALL HANDLING
async function post(request) {
try {
const response = await fetch(request);
const result = await response.json();
console.log("Success:", result);
} catch (error) {
console.error("Error:", error);
}
}
async function textImgTask(input){
console.log('text-to-image task initiated')
let MODEL = "multimodalart/FLUX.1-merged"
let INPUT = input
const client = await Client.connect(MODEL);
const result = await client.predict("/infer", {
prompt: INPUT,
seed: 0,
randomize_seed: true,
width: 256,
height: 256,
guidance_scale: 1,
num_inference_steps: 1,
});
console.log(result.data);
let OUT = result.data[0]
// const URL = 'https://multimodalart-flux-1-merged.hf.space/call/infer'
// const seed = 0
// const randomizeSeed = true
// const width = 1024
// const height = 1024
// const guidaneceScale = 3.5
// const inferenceSteps = 8
// const options = [ prompt[0], seed, randomizeSeed, width, height, guidaneceScale, inferenceSteps ]
// const request = new Request(URL,{
// method: "POST",
// body: JSON.stringify({"data": options }),
// headers: { "Content-Type": "application/json" }
// })
// let out = post(request)
// console.log(out)
// console.log("text-to-image task completed")
return OUT
}
// RUN TEXT-GEN MODEL
// async function textGenTask(pre, prompt, blanks){
async function textGenTask(pre, prompts){
console.log('text-gen task initiated')
// Create concatenated prompt array including preprompt and all variable prompts
// let promptArray = []
let PROMPTS = pre.concat(prompts) //adds the preprompt to the front of the prompts list
console.log(PROMPTS)
// // Fill in blanks from our sample prompt and make new prompts using our variable list 'blanksArray'
// blanks.forEach(b => {
// let p = prompt.replace('[BLANK]', b) // replace the string segment with an item from the blanksArray
// promptArray.push(p) // add the new prompt to the list we created
// })
// create combined fill prompt
let INPUT = PROMPTS.toString()
console.log(INPUT)
// let INPUT = pre + prompt // simple concatenated input
// let INPUT = prompt // basic prompt input
// PICK MODEL
let MODEL = 'Xenova/flan-alpaca-large'
// MODELS LIST
// - Xenova/bloom-560m
// - Xenova/distilgpt2
// - Xenova/LaMini-Cerebras-256M
// - Xenova/gpt-neo-125M // not working well
// - Xenova/llama2.c-stories15M // only fairytails
// - webml/TinyLlama-1.1B-Chat-v1.0
// - Xenova/TinyLlama-1.1B-Chat-v1.0
// - Xenova/flan-alpaca-large //text2text
// const pipe = await pipeline('text-generation', MODEL) //different task type, also for text generation
const pipe = await pipeline('text2text-generation', MODEL)
var hyperparameters = { max_new_tokens: 300, top_k: 30, repetition_penalty: 1.5 }
// setting hyperparameters
// max_new_tokens: 256, top_k: 50, temperature: 0.7, do_sample: true, no_repeat_ngram_size: 2, num_return_sequences: 2 (must be 1?)
// change model run to iterative for each prompt generated locally — will be more expensive??
// promptArray.forEach(async i => {} //this was a loop to wrap model run multiple times
// RUN INPUT THROUGH MODEL,
var out = await pipe(INPUT, hyperparameters)
console.log(await out)
console.log('text-gen task completed')
// PARSE RESULTS as a list of outputs, two different ways depending on the model
// parsing of output
// await out.forEach(o => {
// console.log(o)
// OUTPUT_LIST.push(o.generated_text)
// })
// alternate format for parsing, for chat model type
// await out.choices.forEach(o => {
// console.log(o)
// OUTPUT_LIST.push(o.message.content)
// })
let OUTPUT_LIST = out[0].generated_text //not a list anymore just one result
// OUTPUT_LIST.push(out[0].generated_text)
console.log(OUTPUT_LIST)
console.log('text-gen parsing complete')
return await OUTPUT_LIST
// return await out
}
// RUN FILL-IN MODEL
async function fillInTask(input){
console.log('fill-in task initiated')
// MODELS LIST
// - Xenova/bert-base-uncased
const pipe = await pipeline('fill-mask', 'Xenova/bert-base-uncased');
var out = await pipe(input);
console.log(await out) // yields { score, sequence, token, token_str } for each result
let OUTPUT_LIST = [] // a blank array to store the results from the model
// parsing of output
await out.forEach(o => {
console.log(o) // yields { score, sequence, token, token_str } for each result
OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list
})
console.log(await OUTPUT_LIST)
console.log('fill-in task completed')
// return await out
return await OUTPUT_LIST
}
//// p5.js Instance
new p5(function (p5){
p5.setup = function(){
p5.noCanvas()
console.log('p5 instance loaded')
makeTextModules()
makeInputModule()
makeOutputModule()
}
function makeTextModules(){
const introDiv = p5.createDiv().class('module').id('intro')
p5.createElement('h1','p5.js Critical AI Prompt Battle').parent(introDiv)
p5.createP(`What do AI models really 'know' about you — about your community, your language, your culture? What do they 'know' about different concepts, ideas, and worldviews?`).parent(introDiv)
p5.createP(`This tool lets you compare the results of multiple AI-generated texts and images side-by-side, using blanks you fill in to explore variations on a single prompt. For more info on prompt programming and critical AI, see [TUTORIAL-LINK].`).parent(introDiv)
const instructDiv = p5.createDiv().id('instructions').parent(introDiv)
p5.createElement('h4', 'INSTRUCTIONS').class('header').parent(introDiv)
p5.createP(`Write your prompt using [BLANK] and [MASK], where [BLANK] will be the variation you choose and fill in below, and [MASK] is a variation that the model will complete.`).parent(introDiv)
p5.createP(`For best results, try to phrase your prompt so that [BLANK] and [MASK] highlight the qualities you want to investigate. See [EXAMPLES]`).parent(introDiv)
}
function makeInputModule(){
const inputDiv = p5.createDiv().class('module', 'main').id('inputDiv')
p5.createElement('h4', 'INPUT').parent(inputDiv)
p5.createElement('h3', 'Enter your prompt').class('header').parent(inputDiv)
p5.createP(`Write your prompt in the box below using one [BLANK] and one [MASK]`).parent(inputDiv)
p5.createP(`e.g. Write "The [BLANK] was a [MASK]." and in the three blanks choose three occupations`).parent(inputDiv)
p5.createP(`(This is taken from an actual example used to test GPT-3. (Brown et al. 2020, §6.2.1).)`).class('caption').parent(inputDiv)
promptField = p5.createInput(PROMPT_INPUT).parent(inputDiv) // turns the string into an input; now access the text via PROMPT_INPUT.value()
promptField.size(700)
p5.createP(promptField.attribute('label')).parent(inputDiv)
promptField.addClass("prompt")
p5.createElement('h3', 'Fill in your blanks').class('header').parent(inputDiv)
p5.createP('Add three words or phrases in the boxes below that will replace the [BLANK] in your prompt when the model runs.').parent(inputDiv)
p5.createP('(e.g. doctor, secretary, circus performer)').parent(inputDiv)
addField()
addField()
addField()
// press to run model
const submitButton = p5.createButton("RUN PROMPT")
submitButton.size(170)
submitButton.class('button').parent(inputDiv)
submitButton.mousePressed(displayOutput)
}
function addField(){
let f = p5.createInput("").parent(inputDiv)
f.class("blank")
blanksArray.push(f)
console.log("made variable field")
// // Cap the number to avoids token limit
// let blanks = document.querySelectorAll(".blank")
// if (blanks.length > 3){
// console.log(blanks.length)
// addButton.style('visibility','hidden')
// }
}
// function makeButtons(){
// // // press to add more blanks to fill in
// // const addButton = p5.createButton("more blanks")
// // addButton.size(170)
// // // addButton.position(220,500)
// // addButton.mousePressed(addField)
// }
function makeOutputModule(){
const outputDiv = p5.createDiv().class('module').id('outputDiv')
const outHeader = p5.createElement('h4',"OUTPUT").parent(outputDiv)
// // make output placeholders
// text-only output
p5.createElement('h3', 'Text output').parent(outputDiv)
outText = p5.createP('').id('outText').parent(outputDiv)
// placeholder DIV for images and captions
p5.createElement('h3', 'Text-to-image output').parent(outputDiv)
outPics = p5.createDiv().id('outPics').parent(outputDiv)
// print info about model, prompt, and hyperparams
p5.createElement('h3', 'Prompting info').parent(outputDiv)
outInfo = p5.createP('').id('outInfo').parent(outputDiv)
}
async function displayOutput(){
console.log('submitButton pressed')
// insert waiting dots into results space of interface
outText.html('...', false)
// GRAB CURRENT FIELD INPUTS FROM PROMPT & BLANKS
PROMPT_INPUT = promptField.value() // grab update to the prompt if it's been changed
console.log("latest prompt: ", PROMPT_INPUT)
console.log(blanksArray)
// create a list of the values in the blanks fields
let blanksValues = []
blanksArray.forEach(b => {
blanksValues.push(b.value())
})
console.log(blanksValues)
// Fill in blanks from our sample prompt and make new prompts list using our variable list 'blanksValues'
blanksValues.forEach(b => {
let p = PROMPT_INPUT.replace('[BLANK]', b) // replace the string segment with an item from the blanksValues
promptArray.push(p) // add the new prompts to the prompt list
})
console.log(promptArray)
// call the function that runs the model for the task of your choice here
// make sure to use the PROMPT_INPUT as a parameter, or also the PREPROMPT if valid for that task
// let outs = await textGenTask(PREPROMPT, PROMPT_INPUT, blanksValues)
let outs = await textGenTask(PREPROMPT, promptArray)
console.log(outs)
// insert the model outputs into the paragraph
await outText.html(outs, false) // false valuereplaces text, true appends text
let outPic = await textImgTask(promptArray)
console.log(outPic[1])
p5.createImage(outPic).parent('#outputDiv')
}
p5.draw = function(){
//
}
});