// IMPORT LIBRARIES TOOLS import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.10.1'; // skip local model check env.allowLocalModels = false; // GLOBAL VARIABLES var PREPROMPT = `Please continue the story after "..." and replace the "[MASK]" with your own words: ` // var PREPROMPT = `Please continue the story, filling in any [MASK] with your own words:` // let PREPROMPT = `Please complete the phrase and fill in any [MASK]: ` var PROMPT_INPUT = `` // a field for writing or changing a text value var promptField // an html element to hold the prompt var outText, outPics, outInfo // html elements to hold the results var blanksArray = [] // an empty list to store all the variables we enter to modify the prompt // e.g. ["woman", "man", "non-binary person"] // RUN TEXT-GEN MODEL async function textGenTask(pre, prompt, blanks){ console.log('text-gen task initiated') // Create concatenated prompt array including preprompt and all variable prompts let promptArray = [] promptArray.push(pre) // add preprompt to the list of prompts // Fill in blanks from our sample prompt and make new prompts using our variable list 'blanksArray' blanks.forEach(b => { let p = prompt.replace('[BLANK]', b) // replace the string segment with an item from the blanksArray promptArray.push(p) // add the new prompt to the list we created }) // create combined fill prompt let INPUT = promptArray.toString() console.log(INPUT) // let INPUT = pre + prompt // simple concatenated input // let INPUT = prompt // basic prompt input // PICK MODEL let MODEL = 'Xenova/flan-alpaca-large' // MODELS LIST // - Xenova/bloom-560m // - Xenova/distilgpt2 // - Xenova/LaMini-Cerebras-256M // - Xenova/gpt-neo-125M // not working well // - Xenova/llama2.c-stories15M // only fairytails // - webml/TinyLlama-1.1B-Chat-v1.0 // - Xenova/TinyLlama-1.1B-Chat-v1.0 // - Xenova/flan-alpaca-large //text2text // const pipe = await pipeline('text-generation', MODEL) //different task type, also for text generation const pipe = await pipeline('text2text-generation', MODEL) var hyperparameters = { max_new_tokens: 200, top_k: 20, repetition_penalty: 1.5 } // setting hyperparameters // max_new_tokens: 256, top_k: 50, temperature: 0.7, do_sample: true, no_repeat_ngram_size: 2, num_return_sequences: 2 (must be 1?) // change model run to iterative for each prompt generated locally — will be more expensive?? // promptArray.forEach(async i => {} //this was a loop to wrap model run multiple times // RUN INPUT THROUGH MODEL, var out = await pipe(INPUT, hyperparameters) console.log(await out) console.log('text-gen task completed') // PARSE RESULTS as a list of outputs, two different ways depending on the model // parsing of output // await out.forEach(o => { // console.log(o) // OUTPUT_LIST.push(o.generated_text) // }) // alternate format for parsing, for chat model type // await out.choices.forEach(o => { // console.log(o) // OUTPUT_LIST.push(o.message.content) // }) let OUTPUT_LIST = out[0].generated_text //not a list anymore just one result // OUTPUT_LIST.push(out[0].generated_text) console.log(OUTPUT_LIST) console.log('text-gen parsing complete') return await OUTPUT_LIST // return await out } // RUN FILL-IN MODEL async function fillInTask(input){ console.log('fill-in task initiated') // MODELS LIST // - Xenova/bert-base-uncased const pipe = await pipeline('fill-mask', 'Xenova/bert-base-uncased'); var out = await pipe(input); console.log(await out) // yields { score, sequence, token, token_str } for each result let OUTPUT_LIST = [] // a blank array to store the results from the model // parsing of output await out.forEach(o => { console.log(o) // yields { score, sequence, token, token_str } for each result OUTPUT_LIST.push(o.sequence) // put only the full sequence in a list }) console.log(await OUTPUT_LIST) console.log('fill-in task completed') // return await out return await OUTPUT_LIST } //// p5.js Instance new p5(function (p5){ p5.setup = function(){ p5.noCanvas() console.log('p5 instance loaded') makeTextModules() makeInputModule() makeOutputModule() } function makeTextModules(){ const introDiv = p5.createDiv().class('module').id('intro') p5.createElement('h1','p5.js Critical AI Prompt Battle').parent(introDiv) p5.createP(`What do AI models really 'know' about you — about your community, your language, your culture? What do they 'know' about different concepts, ideas, and worldviews?`).parent(introDiv) p5.createP(`This tool lets you compare the results of multiple AI-generated texts and images side-by-side, using blanks you fill in to explore variations on a single prompt. For more info on prompt programming and critical AI, see [TUTORIAL-LINK].`).parent(introDiv) const instructDiv = p5.createDiv().id('instructions').parent(introDiv) p5.createElement('h4', 'INSTRUCTIONS').class('header').parent(introDiv) p5.createP(`Write your prompt using [BLANK] and [MASK], where [BLANK] will be the variation you choose and fill in below, and [MASK] is a variation that the model will complete.`).parent(introDiv) p5.createP(`For best results, try to phrase your prompt so that [BLANK] and [MASK] highlight the qualities you want to investigate. See [EXAMPLES]`).parent(introDiv) } function makeInputModule(){ const inputDiv = p5.createDiv().class('module', 'main').id('inputDiv') p5.createElement('h4', 'INPUT').parent(inputDiv) p5.createElement('h3', 'Enter your prompt').class('header').parent(inputDiv) p5.createP('Write your prompt in the box below using one [BLANK] and one [MASK].').parent(inputDiv) p5.createP('e.g. Write "The [BLANK] was a [MASK]..." and in the three blanks choose three occupations.').parent(inputDiv) p5.createP('(This is taken from an actual example used to test GPT-3. (Brown et al. 2020).)').class('caption').parent(inputDiv) promptField = p5.createInput(PROMPT_INPUT).parent(inputDiv) // turns the string into an input; now access the text via PROMPT_INPUT.value() promptField.size(700) p5.createP(promptField.attribute('label')).parent(inputDiv) promptField.addClass("prompt") p5.createElement('h3', 'Fill in your blanks').class('header').parent(inputDiv) p5.createP('Add three words or phrases in the boxes below that will replace the [BLANK] in your prompt when the model runs.').parent(inputDiv) p5.createP('(e.g. doctor, secretary, circus performer)').parent(inputDiv) function addField(){ let f = p5.createInput("").parent(inputDiv) f.class("blank") blanksArray.push(f) console.log("made variable field") // // Cap the number to avoids token limit // let blanks = document.querySelectorAll(".blank") // if (blanks.length > 3){ // console.log(blanks.length) // addButton.style('visibility','hidden') // } } addField() addField() addField() // press to run model const submitButton = p5.createButton("RUN PROMPT") submitButton.size(170) submitButton.class('button').parent(inputDiv) submitButton.mousePressed(displayOutput) } // function makeButtons(){ // // // press to add more blanks to fill in // // const addButton = p5.createButton("more blanks") // // addButton.size(170) // // // addButton.position(220,500) // // addButton.mousePressed(addField) // } function makeOutputModule(){ const outputDiv = p5.createDiv().class('module').id('outputDiv') const outHeader = p5.createElement('h4',"OUTPUT").parent(outputDiv) // // make output placeholders // text-only output p5.createElement('h3', 'Text output').parent(outputDiv) outText = p5.createP('').id('outText').parent(outputDiv) // placeholder DIV for images and captions p5.createElement('h3', 'Text-to-image output').parent(outputDiv) outPics = p5.createDiv().id('outPics').parent(outputDiv) // img1 = p5.createImg('URL') // print info about model, prompt, and hyperparams p5.createElement('h3', 'Prompting info').parent(outputDiv) outInfo = p5.createP('').id('outInfo').parent(outputDiv) } async function displayOutput(){ console.log('submitButton pressed') // insert waiting dots into results space of interface outText.html('...', false) // GRAB CURRENT FIELD INPUTS FROM PROMPT & BLANKS PROMPT_INPUT = promptField.value() // grab update to the prompt if it's been changed console.log("latest prompt: ", PROMPT_INPUT) let blanksValues = [] blanksArray.forEach(b => { blanksValues.push(b.value()) }) console.log(blanksValues) // let blanksValues = blanksArray.map(b => b.value) // call the function that runs the model for the task of your choice here // make sure to use the PROMPT_INPUT as a parameter, or also the PREPROMPT if valid for that task let outs = await textGenTask(PREPROMPT, PROMPT_INPUT, blanksValues) console.log(outs) // insert the model outputs into the paragraph await outText.html(outs, false) // false valuereplaces text, true appends text } p5.draw = function(){ // } });