import streamlit as st import os from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA from langchain_community.document_loaders import WebBaseLoader from langchain.embeddings import OllamaEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain.chains import create_retrieval_chain from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFDirectoryLoader import time import requests import os from dotenv import load_dotenv load_dotenv() ## load the Groq API key os.environ['NVIDIA_API_KEY'] = os.environ.get('api_key') def vector_embedding(): if "vectors" not in st.session_state: st.session_state.embeddings = NVIDIAEmbeddings() st.session_state.loader = PyPDFDirectoryLoader("./documents") # Data Ingestion st.session_state.docs = st.session_state.loader.load() # Document Loading st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=50) # Chunk Creation st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs) # Splitting print("hEllo") st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) # Vector OpenAI embeddings st.title("Ayurvedic Chatbot using Nvidia NIM") llm = ChatNVIDIA(model="meta/llama3-70b-instruct") prompt = ChatPromptTemplate.from_template( """ Answer the questions based on the provided context only. Please provide the most accurate response based on the question. Give a detailed answer for the question. {context} Questions:{input} """ ) prompt1 = st.text_input("Enter Your Question From related to Ayurvedic Herbs?") if st.button("Documents Embedding"): vector_embedding() st.write("Vector Store DB Is Ready") if prompt1: # Ensure vectors are initialized before proceeding if "vectors" not in st.session_state: st.warning("Please embed the documents first by clicking the 'Documents Embedding' button.") else: document_chain = create_stuff_documents_chain(llm, prompt) retriever = st.session_state.vectors.as_retriever() retrieval_chain = create_retrieval_chain(retriever, document_chain) start = time.process_time() try: response = retrieval_chain.invoke({'input': prompt1}) except requests.exceptions.SSLError as e: st.error("SSL error occurred: {}".format(e)) response = None if response: print("Response time:", time.process_time() - start) st.write(response['answer']) # With a streamlit expander with st.expander("Document Similarity Search"): # Find the relevant chunks for i, doc in enumerate(response["context"]): st.write(doc.page_content) st.write("--------------------------------")