Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
title = "🤖AI ChatBot"
|
9 |
+
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
|
10 |
+
examples = [["How are you?"]]
|
11 |
+
|
12 |
+
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
|
14 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
|
15 |
+
|
16 |
+
|
17 |
+
def predict(input, history=[]):
|
18 |
+
# tokenize the new input sentence
|
19 |
+
new_user_input_ids = tokenizer.encode(
|
20 |
+
input + tokenizer.eos_token, return_tensors="pt"
|
21 |
+
)
|
22 |
+
|
23 |
+
# append the new user input tokens to the chat history
|
24 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
25 |
+
|
26 |
+
# generate a response
|
27 |
+
history = model.generate(
|
28 |
+
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
|
29 |
+
).tolist()
|
30 |
+
|
31 |
+
# convert the tokens to text, and then split the responses into lines
|
32 |
+
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
33 |
+
# print('decoded_response-->>'+str(response))
|
34 |
+
response = [
|
35 |
+
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
36 |
+
] # convert to tuples of list
|
37 |
+
# print('response-->>'+str(response))
|
38 |
+
return response, history
|
39 |
+
|
40 |
+
|
41 |
+
gr.Interface(
|
42 |
+
fn=predict,
|
43 |
+
title=title,
|
44 |
+
description=description,
|
45 |
+
examples=examples,
|
46 |
+
inputs=["text", "state"],
|
47 |
+
outputs=["chatbot", "state"],
|
48 |
+
theme="finlaymacklon/boxy_violet",
|
49 |
+
).launch()
|