Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,32 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
5 |
-
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Initialize the English text classification pipeline for AI detection
|
11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
@@ -26,82 +47,14 @@ except OSError:
|
|
26 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
27 |
nlp = spacy.load("en_core_web_sm")
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
# Function to get synonyms using NLTK WordNet (Humanifier)
|
38 |
-
def get_synonyms_nltk(word, pos):
|
39 |
-
synsets = wordnet.synsets(word, pos=pos)
|
40 |
-
if synsets:
|
41 |
-
lemmas = synsets[0].lemmas()
|
42 |
-
return [lemma.name() for lemma in lemmas]
|
43 |
-
return []
|
44 |
-
|
45 |
-
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
|
46 |
-
def capitalize_sentences_and_nouns(text):
|
47 |
-
doc = nlp(text)
|
48 |
-
corrected_text = []
|
49 |
-
|
50 |
-
for sent in doc.sents:
|
51 |
-
sentence = []
|
52 |
-
for token in sent:
|
53 |
-
if token.i == sent.start: # First word of the sentence
|
54 |
-
sentence.append(token.text.capitalize())
|
55 |
-
elif token.pos_ == "PROPN": # Proper noun
|
56 |
-
sentence.append(token.text.capitalize())
|
57 |
-
else:
|
58 |
-
sentence.append(token.text)
|
59 |
-
corrected_text.append(' '.join(sentence))
|
60 |
-
|
61 |
-
return ' '.join(corrected_text)
|
62 |
-
|
63 |
-
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
64 |
-
def paraphrase_with_spacy_nltk(text):
|
65 |
-
doc = nlp(text)
|
66 |
-
paraphrased_words = []
|
67 |
-
|
68 |
-
for token in doc:
|
69 |
-
# Map SpaCy POS tags to WordNet POS tags
|
70 |
-
pos = None
|
71 |
-
if token.pos_ in {"NOUN"}:
|
72 |
-
pos = wordnet.NOUN
|
73 |
-
elif token.pos_ in {"VERB"}:
|
74 |
-
pos = wordnet.VERB
|
75 |
-
elif token.pos_ in {"ADJ"}:
|
76 |
-
pos = wordnet.ADJ
|
77 |
-
elif token.pos_ in {"ADV"}:
|
78 |
-
pos = wordnet.ADV
|
79 |
-
|
80 |
-
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
81 |
-
|
82 |
-
# Replace with a synonym only if it makes sense
|
83 |
-
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
|
84 |
-
paraphrased_words.append(synonyms[0])
|
85 |
-
else:
|
86 |
-
paraphrased_words.append(token.text)
|
87 |
-
|
88 |
-
# Join the words back into a sentence
|
89 |
-
paraphrased_sentence = ' '.join(paraphrased_words)
|
90 |
-
|
91 |
-
# Capitalize sentences and proper nouns
|
92 |
-
corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence)
|
93 |
-
|
94 |
-
return corrected_text
|
95 |
-
|
96 |
-
# Combined function: Paraphrase -> Capitalization (Humanifier)
|
97 |
-
def paraphrase_and_correct(text):
|
98 |
-
# Step 1: Paraphrase the text
|
99 |
-
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
100 |
-
|
101 |
-
# Step 2: Capitalize sentences and proper nouns
|
102 |
-
final_text = capitalize_sentences_and_nouns(paraphrased_text)
|
103 |
-
|
104 |
-
return final_text
|
105 |
|
106 |
# Gradio app setup with three tabs
|
107 |
with gr.Blocks() as demo:
|
@@ -120,15 +73,15 @@ with gr.Blocks() as demo:
|
|
120 |
output_text = gr.Textbox(label="Paraphrased Text")
|
121 |
|
122 |
# Connect the paraphrasing function to the button
|
123 |
-
paraphrase_button.click(
|
124 |
|
125 |
with gr.Tab("Grammar Correction"):
|
126 |
grammar_input = gr.Textbox(lines=5, label="Input Text")
|
127 |
grammar_button = gr.Button("Correct Grammar")
|
128 |
grammar_output = gr.Textbox(label="Corrected Text")
|
129 |
|
130 |
-
# Connect the grammar correction function to the button
|
131 |
-
grammar_button.click(
|
132 |
|
133 |
# Launch the app with all functionalities
|
134 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
import gradio as gr
|
5 |
from transformers import pipeline
|
6 |
import spacy
|
|
|
7 |
import nltk
|
8 |
from nltk.corpus import wordnet
|
9 |
+
|
10 |
+
# Function to install GECToR
|
11 |
+
def install_gector():
|
12 |
+
if not os.path.exists('gector'):
|
13 |
+
print("Cloning GECToR repository...")
|
14 |
+
subprocess.run(["git", "clone", "https://github.com/grammarly/gector.git"], check=True)
|
15 |
+
|
16 |
+
# Install dependencies from GECToR requirements
|
17 |
+
subprocess.run([sys.executable, "-m", "pip", "install", "-r", "gector/requirements.txt"], check=True)
|
18 |
+
|
19 |
+
# Manually add GECToR to the Python path
|
20 |
+
sys.path.append(os.path.abspath('gector'))
|
21 |
+
|
22 |
+
# Install and import GECToR
|
23 |
+
install_gector()
|
24 |
+
from gector.gec_model import GecBERTModel
|
25 |
+
|
26 |
+
# Initialize GECToR model for grammar correction
|
27 |
+
gector_model = GecBERTModel(vocab_path='gector/data/output_vocabulary',
|
28 |
+
model_paths=['https://grammarly-nlp-data.s3.amazonaws.com/gector/roberta_1_gector.th'],
|
29 |
+
is_ensemble=False)
|
30 |
|
31 |
# Initialize the English text classification pipeline for AI detection
|
32 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
47 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
48 |
nlp = spacy.load("en_core_web_sm")
|
49 |
|
50 |
+
# Function to correct grammar using GECToR
|
51 |
+
def correct_grammar_with_gector(text):
|
52 |
+
corrected_sentences = []
|
53 |
+
sentences = [text]
|
54 |
+
for sentence in sentences:
|
55 |
+
preds = gector_model.handle_batch([sentence])
|
56 |
+
corrected_sentences.append(preds[0])
|
57 |
+
return ' '.join(corrected_sentences)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Gradio app setup with three tabs
|
60 |
with gr.Blocks() as demo:
|
|
|
73 |
output_text = gr.Textbox(label="Paraphrased Text")
|
74 |
|
75 |
# Connect the paraphrasing function to the button
|
76 |
+
paraphrase_button.click(correct_grammar_with_gector, inputs=text_input, outputs=output_text)
|
77 |
|
78 |
with gr.Tab("Grammar Correction"):
|
79 |
grammar_input = gr.Textbox(lines=5, label="Input Text")
|
80 |
grammar_button = gr.Button("Correct Grammar")
|
81 |
grammar_output = gr.Textbox(label="Corrected Text")
|
82 |
|
83 |
+
# Connect the GECToR grammar correction function to the button
|
84 |
+
grammar_button.click(correct_grammar_with_gector, inputs=grammar_input, outputs=grammar_output)
|
85 |
|
86 |
# Launch the app with all functionalities
|
87 |
demo.launch()
|