Spaces:
Build error
Build error
File size: 22,914 Bytes
ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d ddc8a59 3304f7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
from itertools import product
from typing import Dict
import tensorflow as tf
import torch
from keras_cv.models import stable_diffusion
def port_transformer_block(
transformer_block: tf.keras.Model, up_down: int, block_id: int, attention_id: int
) -> Dict[str, torch.Tensor]:
"""Populates a Transformer block."""
transformer_dict = dict()
if block_id is not None:
prefix = f"{up_down}_blocks.{block_id}"
else:
prefix = "mid_block"
# Norms.
for i in range(1, 4):
if i == 1:
norm = transformer_block.norm1
elif i == 2:
norm = transformer_block.norm2
elif i == 3:
norm = transformer_block.norm3
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.norm{i}.weight"
] = torch.from_numpy(norm.get_weights()[0])
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.norm{i}.bias"
] = torch.from_numpy(norm.get_weights()[1])
# Attentions.
for i in range(1, 3):
if i == 1:
attn = transformer_block.attn1
else:
attn = transformer_block.attn2
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.attn{i}.to_q.weight"
] = torch.from_numpy(attn.to_q.get_weights()[0].transpose())
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.attn{i}.to_k.weight"
] = torch.from_numpy(attn.to_k.get_weights()[0].transpose())
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.attn{i}.to_v.weight"
] = torch.from_numpy(attn.to_v.get_weights()[0].transpose())
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.attn{i}.to_out.0.weight"
] = torch.from_numpy(attn.out_proj.get_weights()[0].transpose())
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.attn{i}.to_out.0.bias"
] = torch.from_numpy(attn.out_proj.get_weights()[1])
# Dense.
for i in range(0, 3, 2):
if i == 0:
layer = transformer_block.geglu.dense
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.ff.net.{i}.proj.weight"
] = torch.from_numpy(layer.get_weights()[0].transpose())
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.ff.net.{i}.proj.bias"
] = torch.from_numpy(layer.get_weights()[1])
else:
layer = transformer_block.dense
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.ff.net.{i}.weight"
] = torch.from_numpy(layer.get_weights()[0].transpose())
transformer_dict[
f"{prefix}.attentions.{attention_id}.transformer_blocks.0.ff.net.{i}.bias"
] = torch.from_numpy(layer.get_weights()[1])
return transformer_dict
def populate_unet(tf_unet: tf.keras.Model) -> Dict[str, torch.Tensor]:
"""Populates the state dict from the provided TensorFlow model
(applicable only for the UNet)."""
unet_state_dict = dict()
timstep_emb = 1
padded_conv = 1
up_block = 0
up_res_blocks = list(product([0, 1, 2, 3], [0, 1, 2]))
up_res_block_flag = 0
up_spatial_transformer_blocks = list(product([1, 2, 3], [0, 1, 2]))
up_spatial_transformer_flag = 0
for layer in tf_unet.layers:
# Timstep embedding.
if isinstance(layer, tf.keras.layers.Dense):
unet_state_dict[
f"time_embedding.linear_{timstep_emb}.weight"
] = torch.from_numpy(layer.get_weights()[0].transpose())
unet_state_dict[
f"time_embedding.linear_{timstep_emb}.bias"
] = torch.from_numpy(layer.get_weights()[1])
timstep_emb += 1
# Padded convs (downsamplers).
elif isinstance(
layer, stable_diffusion.__internal__.layers.padded_conv2d.PaddedConv2D
):
if padded_conv == 1:
# Transposition axes taken from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_pytorch_utils.py#L104
unet_state_dict["conv_in.weight"] = torch.from_numpy(
layer.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict["conv_in.bias"] = torch.from_numpy(
layer.get_weights()[1]
)
elif padded_conv in [2, 3, 4]:
unet_state_dict[
f"down_blocks.{padded_conv-2}.downsamplers.0.conv.weight"
] = torch.from_numpy(layer.get_weights()[0].transpose(3, 2, 0, 1))
unet_state_dict[
f"down_blocks.{padded_conv-2}.downsamplers.0.conv.bias"
] = torch.from_numpy(layer.get_weights()[1])
elif padded_conv == 5:
unet_state_dict["conv_out.weight"] = torch.from_numpy(
layer.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict["conv_out.bias"] = torch.from_numpy(
layer.get_weights()[1]
)
padded_conv += 1
# Upsamplers.
elif isinstance(layer, stable_diffusion.diffusion_model.Upsample):
conv = layer.conv
unet_state_dict[
f"up_blocks.{up_block}.upsamplers.0.conv.weight"
] = torch.from_numpy(conv.get_weights()[0].transpose(3, 2, 0, 1))
unet_state_dict[
f"up_blocks.{up_block}.upsamplers.0.conv.bias"
] = torch.from_numpy(conv.get_weights()[1])
up_block += 1
# Output norms.
elif isinstance(
layer,
stable_diffusion.__internal__.layers.group_normalization.GroupNormalization,
):
unet_state_dict["conv_norm_out.weight"] = torch.from_numpy(
layer.get_weights()[0]
)
unet_state_dict["conv_norm_out.bias"] = torch.from_numpy(
layer.get_weights()[1]
)
# All ResBlocks.
elif isinstance(layer, stable_diffusion.diffusion_model.ResBlock):
layer_name = layer.name
parts = layer_name.split("_")
# Down.
if len(parts) == 2 or int(parts[-1]) < 8:
entry_flow = layer.entry_flow
embedding_flow = layer.embedding_flow
exit_flow = layer.exit_flow
down_block_id = 0 if len(parts) == 2 else int(parts[-1]) // 2
down_resnet_id = 0 if len(parts) == 2 else int(parts[-1]) % 2
# Conv blocks.
first_conv_layer = entry_flow[-1]
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.conv1.weight"
] = torch.from_numpy(
first_conv_layer.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.conv1.bias"
] = torch.from_numpy(first_conv_layer.get_weights()[1])
second_conv_layer = exit_flow[-1]
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.conv2.weight"
] = torch.from_numpy(
second_conv_layer.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.conv2.bias"
] = torch.from_numpy(second_conv_layer.get_weights()[1])
# Residual blocks.
if hasattr(layer, "residual_projection"):
if isinstance(
layer.residual_projection,
stable_diffusion.__internal__.layers.padded_conv2d.PaddedConv2D,
):
residual = layer.residual_projection
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.conv_shortcut.weight"
] = torch.from_numpy(
residual.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.conv_shortcut.bias"
] = torch.from_numpy(residual.get_weights()[1])
# Timestep embedding.
embedding_proj = embedding_flow[-1]
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.time_emb_proj.weight"
] = torch.from_numpy(embedding_proj.get_weights()[0].transpose())
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.time_emb_proj.bias"
] = torch.from_numpy(embedding_proj.get_weights()[1])
# Norms.
first_group_norm = entry_flow[0]
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.norm1.weight"
] = torch.from_numpy(first_group_norm.get_weights()[0])
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.norm1.bias"
] = torch.from_numpy(first_group_norm.get_weights()[1])
second_group_norm = exit_flow[0]
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.norm2.weight"
] = torch.from_numpy(second_group_norm.get_weights()[0])
unet_state_dict[
f"down_blocks.{down_block_id}.resnets.{down_resnet_id}.norm2.bias"
] = torch.from_numpy(second_group_norm.get_weights()[1])
# Middle.
elif int(parts[-1]) == 8 or int(parts[-1]) == 9:
entry_flow = layer.entry_flow
embedding_flow = layer.embedding_flow
exit_flow = layer.exit_flow
mid_resnet_id = int(parts[-1]) % 2
# Conv blocks.
first_conv_layer = entry_flow[-1]
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.conv1.weight"
] = torch.from_numpy(
first_conv_layer.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.conv1.bias"
] = torch.from_numpy(first_conv_layer.get_weights()[1])
second_conv_layer = exit_flow[-1]
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.conv2.weight"
] = torch.from_numpy(
second_conv_layer.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.conv2.bias"
] = torch.from_numpy(second_conv_layer.get_weights()[1])
# Residual blocks.
if hasattr(layer, "residual_projection"):
if isinstance(
layer.residual_projection,
stable_diffusion.__internal__.layers.padded_conv2d.PaddedConv2D,
):
residual = layer.residual_projection
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.conv_shortcut.weight"
] = torch.from_numpy(
residual.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.conv_shortcut.bias"
] = torch.from_numpy(residual.get_weights()[1])
# Timestep embedding.
embedding_proj = embedding_flow[-1]
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.time_emb_proj.weight"
] = torch.from_numpy(embedding_proj.get_weights()[0].transpose())
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.time_emb_proj.bias"
] = torch.from_numpy(embedding_proj.get_weights()[1])
# Norms.
first_group_norm = entry_flow[0]
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.norm1.weight"
] = torch.from_numpy(first_group_norm.get_weights()[0])
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.norm1.bias"
] = torch.from_numpy(first_group_norm.get_weights()[1])
second_group_norm = exit_flow[0]
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.norm2.weight"
] = torch.from_numpy(second_group_norm.get_weights()[0])
unet_state_dict[
f"mid_block.resnets.{mid_resnet_id}.norm2.bias"
] = torch.from_numpy(second_group_norm.get_weights()[1])
# Up.
elif int(parts[-1]) > 9 and up_res_block_flag < len(up_res_blocks):
entry_flow = layer.entry_flow
embedding_flow = layer.embedding_flow
exit_flow = layer.exit_flow
up_res_block = up_res_blocks[up_res_block_flag]
up_block_id = up_res_block[0]
up_resnet_id = up_res_block[1]
# Conv blocks.
first_conv_layer = entry_flow[-1]
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.conv1.weight"
] = torch.from_numpy(
first_conv_layer.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.conv1.bias"
] = torch.from_numpy(first_conv_layer.get_weights()[1])
second_conv_layer = exit_flow[-1]
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.conv2.weight"
] = torch.from_numpy(
second_conv_layer.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.conv2.bias"
] = torch.from_numpy(second_conv_layer.get_weights()[1])
# Residual blocks.
if hasattr(layer, "residual_projection"):
if isinstance(
layer.residual_projection,
stable_diffusion.__internal__.layers.padded_conv2d.PaddedConv2D,
):
residual = layer.residual_projection
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.conv_shortcut.weight"
] = torch.from_numpy(
residual.get_weights()[0].transpose(3, 2, 0, 1)
)
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.conv_shortcut.bias"
] = torch.from_numpy(residual.get_weights()[1])
# Timestep embedding.
embedding_proj = embedding_flow[-1]
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.time_emb_proj.weight"
] = torch.from_numpy(embedding_proj.get_weights()[0].transpose())
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.time_emb_proj.bias"
] = torch.from_numpy(embedding_proj.get_weights()[1])
# Norms.
first_group_norm = entry_flow[0]
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.norm1.weight"
] = torch.from_numpy(first_group_norm.get_weights()[0])
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.norm1.bias"
] = torch.from_numpy(first_group_norm.get_weights()[1])
second_group_norm = exit_flow[0]
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.norm2.weight"
] = torch.from_numpy(second_group_norm.get_weights()[0])
unet_state_dict[
f"up_blocks.{up_block_id}.resnets.{up_resnet_id}.norm2.bias"
] = torch.from_numpy(second_group_norm.get_weights()[1])
up_res_block_flag += 1
# All SpatialTransformer blocks.
elif isinstance(layer, stable_diffusion.diffusion_model.SpatialTransformer):
layer_name = layer.name
parts = layer_name.split("_")
# Down.
if len(parts) == 2 or int(parts[-1]) < 6:
down_block_id = 0 if len(parts) == 2 else int(parts[-1]) // 2
down_attention_id = 0 if len(parts) == 2 else int(parts[-1]) % 2
# Convs.
proj1 = layer.proj1
unet_state_dict[
f"down_blocks.{down_block_id}.attentions.{down_attention_id}.proj_in.weight"
] = torch.from_numpy(proj1.get_weights()[0].transpose(3, 2, 0, 1))
unet_state_dict[
f"down_blocks.{down_block_id}.attentions.{down_attention_id}.proj_in.bias"
] = torch.from_numpy(proj1.get_weights()[1])
proj2 = layer.proj2
unet_state_dict[
f"down_blocks.{down_block_id}.attentions.{down_attention_id}.proj_out.weight"
] = torch.from_numpy(proj2.get_weights()[0].transpose(3, 2, 0, 1))
unet_state_dict[
f"down_blocks.{down_block_id}.attentions.{down_attention_id}.proj_out.bias"
] = torch.from_numpy(proj2.get_weights()[1])
# Transformer blocks.
transformer_block = layer.transformer_block
unet_state_dict.update(
port_transformer_block(
transformer_block, "down", down_block_id, down_attention_id
)
)
# Norms.
norm = layer.norm
unet_state_dict[
f"down_blocks.{down_block_id}.attentions.{down_attention_id}.norm.weight"
] = torch.from_numpy(norm.get_weights()[0])
unet_state_dict[
f"down_blocks.{down_block_id}.attentions.{down_attention_id}.norm.bias"
] = torch.from_numpy(norm.get_weights()[1])
# Middle.
elif int(parts[-1]) == 6:
mid_attention_id = int(parts[-1]) % 2
# Convs.
proj1 = layer.proj1
unet_state_dict[
f"mid_block.attentions.{mid_attention_id}.proj_in.weight"
] = torch.from_numpy(proj1.get_weights()[0].transpose(3, 2, 0, 1))
unet_state_dict[
f"mid_block.attentions.{mid_attention_id}.proj_in.bias"
] = torch.from_numpy(proj1.get_weights()[1])
proj2 = layer.proj2
unet_state_dict[
f"mid_block.attentions.{mid_resnet_id}.proj_out.weight"
] = torch.from_numpy(proj2.get_weights()[0].transpose(3, 2, 0, 1))
unet_state_dict[
f"mid_block.attentions.{mid_attention_id}.proj_out.bias"
] = torch.from_numpy(proj2.get_weights()[1])
# Transformer blocks.
transformer_block = layer.transformer_block
unet_state_dict.update(
port_transformer_block(
transformer_block, "mid", None, mid_attention_id
)
)
# Norms.
norm = layer.norm
unet_state_dict[
f"mid_block.attentions.{mid_attention_id}.norm.weight"
] = torch.from_numpy(norm.get_weights()[0])
unet_state_dict[
f"mid_block.attentions.{mid_attention_id}.norm.bias"
] = torch.from_numpy(norm.get_weights()[1])
# Up.
elif int(parts[-1]) > 6 and up_spatial_transformer_flag < len(
up_spatial_transformer_blocks
):
up_spatial_transformer_block = up_spatial_transformer_blocks[
up_spatial_transformer_flag
]
up_block_id = up_spatial_transformer_block[0]
up_attention_id = up_spatial_transformer_block[1]
# Convs.
proj1 = layer.proj1
unet_state_dict[
f"up_blocks.{up_block_id}.attentions.{up_attention_id}.proj_in.weight"
] = torch.from_numpy(proj1.get_weights()[0].transpose(3, 2, 0, 1))
unet_state_dict[
f"up_blocks.{up_block_id}.attentions.{up_attention_id}.proj_in.bias"
] = torch.from_numpy(proj1.get_weights()[1])
proj2 = layer.proj2
unet_state_dict[
f"up_blocks.{up_block_id}.attentions.{up_attention_id}.proj_out.weight"
] = torch.from_numpy(proj2.get_weights()[0].transpose(3, 2, 0, 1))
unet_state_dict[
f"up_blocks.{up_block_id}.attentions.{up_attention_id}.proj_out.bias"
] = torch.from_numpy(proj2.get_weights()[1])
# Transformer blocks.
transformer_block = layer.transformer_block
unet_state_dict.update(
port_transformer_block(
transformer_block, "up", up_block_id, up_attention_id
)
)
# Norms.
norm = layer.norm
unet_state_dict[
f"up_blocks.{up_block_id}.attentions.{up_attention_id}.norm.weight"
] = torch.from_numpy(norm.get_weights()[0])
unet_state_dict[
f"up_blocks.{up_block_id}.attentions.{up_attention_id}.norm.bias"
] = torch.from_numpy(norm.get_weights()[1])
up_spatial_transformer_flag += 1
return unet_state_dict
|