File size: 7,933 Bytes
ca4cd1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e4cb1
ca4cd1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78f8f9a
ca4cd1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9658d9
ca4cd1a
 
 
 
 
 
 
 
 
 
 
 
9ee5784
 
 
 
ca4cd1a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import importlib
from functools import partial
from typing import List

import gradio as gr
import numpy as np
import torch
from diffusers import StableDiffusionPipeline
from PIL import Image
from torchmetrics.functional.multimodal import clip_score
from torchmetrics.image.inception import InceptionScore

SEED = 0
WEIGHT_DTYPE = torch.float16

TITLE = "Evaluate Schedulers with StableDiffusionPipeline 🧨"
DESCRIPTION = """
This Space allows you to quantitatively compare [different noise schedulers](https://huggingface.co/docs/diffusers/using-diffusers/schedulers) with a [`StableDiffusionPipeline`](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview).

One of the applications of this Space could be to evaluate different schedulers for a certain Stable Diffusion checkpoint for a fixed number of inference steps.

Here's how it works:

* The evaluator first sets a seed and then generates the initial noise which is passed as the initial latent to start the image generation process. It is done to ensure fair comparison.
* This initial latent is used every time the pipeline is run (with different schedulers).
* To quantify the quality of the generated images we use:
    * [Inception Score](https://en.wikipedia.org/wiki/Inception_score)
    * [Clip Score](https://arxiv.org/abs/2104.08718)

**Notes**:

* The default scheduler associated with the provided checkpoint is always used for reporting the scores.
* Increasing both the number of images per prompt and the number of inference steps could quickly build up the inference queue and thus
resulting in slowdowns.
"""


inception_score_fn = InceptionScore(normalize=True)
torch.manual_seed(SEED)
clip_score_fn = partial(clip_score, model_name_or_path="openai/clip-vit-base-patch16")


def make_grid(images, rows, cols):
    w, h = images[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))
    for i, image in enumerate(images):
        grid.paste(image, box=(i % cols * w, i // cols * h))
    return grid


# Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_utils.py#L814
def numpy_to_pil(images):
    """
    Convert a numpy image or a batch of images to a PIL image.
    """
    if images.ndim == 3:
        images = images[None, ...]
    images = (images * 255).round().astype("uint8")
    if images.shape[-1] == 1:
        # special case for grayscale (single channel) images
        pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
    else:
        pil_images = [Image.fromarray(image) for image in images]

    return pil_images


def prepare_report(scheduler_name: str, results: dict):
    image_grid = results["images"]
    scores = results["scores"]
    img_str = ""

    image_name = f"{scheduler_name}_images.png"
    image_grid.save(image_name)
    img_str = img_str = f"![img_grid_{scheduler_name}](/file=./{image_name})\n"

    report_str = f"""
\n\n## {scheduler_name}

### Sample images

{img_str}

### Scores

{scores}
\n\n
    """

    return report_str


def initialize_pipeline(checkpoint: str):
    sd_pipe = StableDiffusionPipeline.from_pretrained(
        checkpoint, torch_dtype=WEIGHT_DTYPE
    )
    sd_pipe = sd_pipe.to("cuda")
    original_scheduler_config = sd_pipe.scheduler.config
    return sd_pipe, original_scheduler_config


def get_scheduler(scheduler_name: str):
    schedulers_lib = importlib.import_module("diffusers", package="schedulers")
    scheduler_abs = getattr(schedulers_lib, scheduler_name)

    return scheduler_abs


def get_latents(num_images_per_prompt: int, seed=SEED):
    generator = torch.manual_seed(seed)
    latents = np.random.RandomState(seed).standard_normal(
        (num_images_per_prompt, 4, 64, 64)
    )
    latents = torch.from_numpy(latents).to(device="cuda", dtype=WEIGHT_DTYPE)
    return latents


def compute_metrics(images: np.ndarray, prompts: List[str]):
    inception_score_fn.update(torch.from_numpy(images).permute(0, 3, 1, 2))
    inception_score = inception_score_fn.compute()

    images_int = (images * 255).astype("uint8")
    clip_score = clip_score_fn(
        torch.from_numpy(images_int).permute(0, 3, 1, 2), prompts
    ).detach()
    return {
        "inception_score (⬆️)": {
            "mean": round(float(inception_score[0]), 4),
            "std": round(float(inception_score[1]), 4),
        },
        "clip_score (⬆️)": round(float(clip_score), 4),
    }


def run(
    prompt: str,
    num_images_per_prompt: int,
    num_inference_steps: int,
    checkpoint: str,
    schedulers_to_test: List[str],
):
    all_images = {}

    sd_pipeline, original_scheduler_config = initialize_pipeline(checkpoint)
    latents = get_latents(num_images_per_prompt)
    prompts = [prompt] * num_images_per_prompt

    images = sd_pipeline(
        prompts,
        latents=latents,
        num_inference_steps=num_inference_steps,
        output_type="numpy",
    ).images
    original_scheduler_name = original_scheduler_config._class_name

    all_images.update(
        {
            original_scheduler_name: {
                "images": make_grid(numpy_to_pil(images), 1, num_images_per_prompt),
                "scores": compute_metrics(images, prompts),
            }
        }
    )
    # print("First scheduler complete.")

    for scheduler_name in schedulers_to_test:
        if scheduler_name == original_scheduler_name:
            continue
        scheduler_cls = get_scheduler(scheduler_name)
        current_scheduler = scheduler_cls.from_config(original_scheduler_config)
        sd_pipeline.scheduler = current_scheduler

        cur_scheduler_images = sd_pipeline(
            prompts, num_inference_steps=num_inference_steps, output_type="numpy"
        ).images
        all_images.update(
            {
                scheduler_name: {
                    "images": make_grid(
                        numpy_to_pil(cur_scheduler_images), 1, num_images_per_prompt
                    ),
                    "scores": compute_metrics(cur_scheduler_images, prompts),
                }
            }
        )
        # print(f"{scheduler_name} complete.")

    output_str = ""
    for scheduler_name in all_images:
        # print(f"scheduler_name: {scheduler_name}")
        output_str += prepare_report(scheduler_name, all_images[scheduler_name])
    # print(output_str)
    return output_str


with gr.Blocks() as demo:
    gr.HTML(f"<div align='center'{TITLE}</div>")
    with gr.Row():
        with gr.Column():
            prompt = gr.Text(max_lines=1, placeholder="a painting of a dog")
            num_images_per_prompt = gr.Slider(3, 10, value=3, step=1)
            num_inference_steps = gr.Slider(10, 100, value=50, step=1)
            model_ckpt = gr.Dropdown(
                [
                    "CompVis/stable-diffusion-v1-4",
                    "runwayml/stable-diffusion-v1-5",
                    "stabilityai/stable-diffusion-2-base",
                    "Other"
                ],
                value="CompVis/stable-diffusion-v1-4",
                multiselect=False,
                interactive=True,
            )
            other_finedtuned_checkpoints = gr.Text(visible=False, placeholder="valhalla/sd-pokemon-model")
            model_ckpt.change(lambda x: gr.Dropdown.update(visible=x=="Other"), model_ckpt, other_finedtuned_checkpoints)
            schedulers_to_test = gr.Dropdown(
                [
                    "EulerDiscreteScheduler",
                    "PNDMScheduler",
                    "LMSDiscreteScheduler",
                    "DPMSolverMultistepScheduler",
                    "DDIMScheduler",
                ],
                value=["LMSDiscreteScheduler"],
                multiselect=True,
            )
            evaluation_button = gr.Button(value="Submit")
        
        with gr.Column():
            report = gr.Markdown(label="Evaluation Report")
           
demo.launch()