sbgonenc96 commited on
Commit
a6a7b53
1 Parent(s): 0449e2e

- prediction model's printed error rate was removed
- emojis replaced
- min milage is set to 1
- prediction model is trained on all data

Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -40,9 +40,11 @@ model=LinearRegression()
40
  pipe=Pipeline(steps=[('preprocessor',preproccer),
41
  ('model',model)])
42
 
43
- pipe.fit(X_train,y_train)
44
- y_pred=pipe.predict(X_test)
45
- mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
 
 
46
 
47
  import streamlit as st
48
  def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
@@ -63,12 +65,12 @@ def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,lea
63
  prediction=pipe.predict(input_data)[0]
64
  return prediction
65
 
66
- st.title("Car Price Prediction :green_car: @sbgonenc")
67
  st.write("Select Car Specs")
68
  make=st.selectbox("Brand",df['Make'].unique())
69
  model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
70
  trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
71
- mileage=st.number_input("Milage",200,60000)
72
  car_type=st.selectbox("Type",df[(df['Make']==make) & (df['Model']==model) & (df['Trim']==trim )]['Type'].unique())
73
  cylinder=st.selectbox("Cylinders",df['Cylinder'].unique())
74
  liter=st.number_input("Liter",1,6)
@@ -79,4 +81,4 @@ leather=st.radio("Leather",[True,False])
79
  if st.button("Prediction"):
80
  pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
81
 
82
- st.write("11062024:Predicted Price :red_car: $",round(pred[0],2))
 
40
  pipe=Pipeline(steps=[('preprocessor',preproccer),
41
  ('model',model)])
42
 
43
+ ## Train with all data
44
+
45
+ pipe.fit(X,y)
46
+ #y_pred=pipe.predict(X_test)
47
+ #mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
48
 
49
  import streamlit as st
50
  def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
 
65
  prediction=pipe.predict(input_data)[0]
66
  return prediction
67
 
68
+ st.title("Car Price Prediction :racing_car: \n by @sbgonenc")
69
  st.write("Select Car Specs")
70
  make=st.selectbox("Brand",df['Make'].unique())
71
  model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
72
  trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
73
+ mileage=st.number_input("Milage",1 ,60000)
74
  car_type=st.selectbox("Type",df[(df['Make']==make) & (df['Model']==model) & (df['Trim']==trim )]['Type'].unique())
75
  cylinder=st.selectbox("Cylinders",df['Cylinder'].unique())
76
  liter=st.number_input("Liter",1,6)
 
81
  if st.button("Prediction"):
82
  pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
83
 
84
+ st.write("Predicted Price :oncoming_automobile: $",round(pred[0],2))