Spaces:
Sleeping
Sleeping
File size: 9,678 Bytes
a9700a7 331acc6 a9700a7 846f373 8aeaacd 846f373 a9700a7 ab7ae24 a9700a7 846f373 a9700a7 846f373 a9700a7 846f373 a9700a7 846f373 a9700a7 846f373 a9700a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import numpy as np
import gradio as gr
import pandas as pd
import numpy as np
import torch
from torch import nn
from torch.nn import init, MarginRankingLoss
from torch.optim import Adam
from distutils.version import LooseVersion
from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable
import math
from transformers import AutoConfig, AutoModel, AutoTokenizer
import nltk
import re
import torch.optim as optim
from transformers import AutoModelForMaskedLM
import torch.nn.functional as F
import random
# In[2]:
# eng_dict = []
# with open('eng_dict.txt', 'r') as file:
# # Read each line from the file and append it to the list
# for line in file:
# # Remove leading and trailing whitespace (e.g., newline characters)
# cleaned_line = line.strip()
# eng_dict.append(cleaned_line)
# In[14]:
def greet(X, ny):
global eng_dict
if ny == 0:
rand_no = random.random()
tok_map = {2: 0.4363429005892416,
1: 0.6672580202327398,
4: 0.7476060740459144,
3: 0.9618703668504087,
6: 0.9701028532809564,
7: 0.9729244545819342,
8: 0.9739508754144756,
5: 0.9994508859743607,
9: 0.9997507867114407,
10: 0.9999112969650892,
11: 0.9999788802297832,
0: 0.9999831041838266,
12: 0.9999873281378701,
22: 0.9999957760459568,
14: 1.0000000000000002}
for key in tok_map.keys():
if rand_no < tok_map[key]:
num_sub_tokens_label = key
break
else:
num_sub_tokens_label = ny
tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base")
model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base")
model.load_state_dict(torch.load('model_26_2'))
model.eval()
X_init = X
X_init = X_init.replace("[MASK]", " [MASK] ")
X_init = X_init.replace("[MASK]", " ".join([tokenizer.mask_token] * num_sub_tokens_label))
tokens = tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt')
input_id_chunki = tokens['input_ids'][0].split(510)
input_id_chunks = []
mask_chunks = []
mask_chunki = tokens['attention_mask'][0].split(510)
for tensor in input_id_chunki:
input_id_chunks.append(tensor)
for tensor in mask_chunki:
mask_chunks.append(tensor)
xi = torch.full((1,), fill_value=101)
yi = torch.full((1,), fill_value=1)
zi = torch.full((1,), fill_value=102)
for r in range(len(input_id_chunks)):
input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1)
input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1)
mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1)
mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1)
di = torch.full((1,), fill_value=0)
for i in range(len(input_id_chunks)):
pad_len = 512 - input_id_chunks[i].shape[0]
if pad_len > 0:
for p in range(pad_len):
input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1)
mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1)
vb = torch.ones_like(input_id_chunks[0])
fg = torch.zeros_like(input_id_chunks[0])
maski = []
for l in range(len(input_id_chunks)):
masked_pos = []
for i in range(len(input_id_chunks[l])):
if input_id_chunks[l][i] == tokenizer.mask_token_id: #103
if i != 0 and input_id_chunks[l][i-1] == tokenizer.mask_token_id:
continue
masked_pos.append(i)
maski.append(masked_pos)
input_ids = torch.stack(input_id_chunks)
att_mask = torch.stack(mask_chunks)
outputs = model(input_ids, attention_mask = att_mask)
last_hidden_state = outputs[0].squeeze()
l_o_l_sa = []
sum_state = []
for t in range(num_sub_tokens_label):
c = []
l_o_l_sa.append(c)
if len(maski) == 1:
masked_pos = maski[0]
for k in masked_pos:
for t in range(num_sub_tokens_label):
l_o_l_sa[t].append(last_hidden_state[k+t])
else:
for p in range(len(maski)):
masked_pos = maski[p]
for k in masked_pos:
for t in range(num_sub_tokens_label):
if (k+t) >= len(last_hidden_state[p]):
l_o_l_sa[t].append(last_hidden_state[p+1][k+t-len(last_hidden_state[p])])
continue
l_o_l_sa[t].append(last_hidden_state[p][k+t])
for t in range(num_sub_tokens_label):
sum_state.append(l_o_l_sa[t][0])
for i in range(len(l_o_l_sa[0])):
if i == 0:
continue
for t in range(num_sub_tokens_label):
sum_state[t] = sum_state[t] + l_o_l_sa[t][i]
yip = len(l_o_l_sa[0])
# qw = []
er = ""
val = 0.0
for t in range(num_sub_tokens_label):
sum_state[t] /= yip
idx = torch.topk(sum_state[t], k=5, dim=0)[1]
probs = F.softmax(sum_state[t], dim=0)
wor = [tokenizer.decode(i.item()).strip() for i in idx]
cnt = 0
for kl in wor:
if all(char.isalpha() for char in kl):
# qw.append(kl.lower())
er+=kl
break
cnt+=1
val = val - torch.log(probs[idx[cnt]])
val = val/num_sub_tokens_label
vali = round(val.item(), 2)
# print(er)
# astr = ""
# for j in range(len(qw)):
# mock = ""
# mock+= qw[j]
# if (j+2) < len(qw) and ((mock+qw[j+1]+qw[j+2]) in eng_dict):
# mock +=qw[j+1]
# mock +=qw[j+2]
# j = j+2
# elif (j+1) < len(qw) and ((mock+qw[j+1]) in eng_dict):
# mock +=qw[j+1]
# j = j+1
# if len(astr) == 0:
# astr+=mock
# else:
# astr+=mock.capitalize()
er = er+" (with PLL value of: "+str(vali)+")"
return er, vali
def meet(X, ni):
if len(ni) == 0:
ni = 0
ni = int(ni)
if ni == 0:
print_str,vali = greet(X,ni)
elif ni == -1:
tot_pll = 100.00
print_str = ""
fin_out = "The highest confidence prediction is: "
add_out = ""
for r in range(6):
er, pll = greet(X, 6-r)
print_str+= er
print_str+='\n'
if (pll - tot_pll) > 0.1 and tot_pll < 1:
break
elif pll >= tot_pll:
continue
else:
add_out = er
tot_pll = pll
print_str= print_str+fin_out+add_out
else:
print_str,vali = greet(X,ni)
return print_str
title = "Rename a variable in a Java class"
description = """This model is a fine-tuned GraphCodeBERT model fine-tuned to output higher-quality variable names for Java classes. Long classes are handled by the
model. Replace any variable name with a "[MASK]" to get an identifier renaming.
In the input box for the number of tokens, specify a number from 1 to 6 indicating the number of tokens in the variable name. Feel free to test multiple values. Use 0 to get a randomly sampled number. Use -1 to get the best recommendation, although this will be slower
"""
ex = [["""import java.io.*;
public class x {
public static void main(String[] args) {
String f = "file.txt";
BufferedReader [MASK] = null;
String l;
try {
[MASK] = new BufferedReader(new FileReader(f));
while ((l = [MASK].readLine()) != null) {
System.out.println(l);
}
} catch (IOException e) {
e.printStackTrace();
} finally {
try {
if ([MASK] != null) [MASK].close();
} catch (IOException ex) {
ex.printStackTrace();
}
}
}
}""", -1], ["""import java.net.*;
import java.io.*;
public class s {
public static void main(String[] args) throws IOException {
ServerSocket [MASK] = new ServerSocket(8000);
try {
Socket s = [MASK].accept();
PrintWriter pw = new PrintWriter(s.getOutputStream(), true);
BufferedReader br = new BufferedReader(new InputStreamReader(s.getInputStream()));
String i;
while ((i = br.readLine()) != null) {
pw.println(i);
}
} finally {
if ([MASK] != null) [MASK].close();
}
}
}""", -1], ["""import java.io.*;
import java.util.*;
public class y {
public static void main(String[] args) {
String [MASK] = "data.csv";
String l = "";
String cvsSplitBy = ",";
try (BufferedReader br = new BufferedReader(new FileReader([MASK]))) {
while ((l = br.readLine()) != null) {
String[] z = l.split(cvsSplitBy);
System.out.println("Values [field-1= " + z[0] + " , field-2=" + z[1] + "]");
}
} catch (IOException e) {
e.printStackTrace();
}
}
}""", -1]]
# We instantiate the Textbox class
textbox = gr.Textbox(label="Type Java code snippet:", placeholder="replace variable with [MASK]", lines=10)
textbox1 = gr.Textbox(label="Number of tokens in name:", placeholder="0 for randomly sampled number of tokens and -1 for automatic number of token selection",lines=1)
gr.Interface(title = title, description = description, examples = ex, fn=meet, inputs=[
textbox, textbox1
], outputs="text").launch()
# In[ ]:
|