scholar-2001 commited on
Commit
9f71e21
1 Parent(s): 9c1a8da
Files changed (5) hide show
  1. app.py +57 -0
  2. df_popularity.pkl +3 -0
  3. mapping.pkl +3 -0
  4. requirements.txt +1 -0
  5. tfidf.pkl +3 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import streamlit as st
3
+ import requests
4
+ import pandas as pd
5
+ from sklearn.metrics.pairwise import linear_kernel
6
+ def fetch_poster(movie_id):
7
+ url = "https://api.themoviedb.org/3/movie/{}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US".format(movie_id)
8
+ data = requests.get(url)
9
+ data = data.json()
10
+ poster_path = data['poster_path']
11
+ full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
12
+ return full_path
13
+
14
+ def get_popular_recommendations(title, linear_sim, df):
15
+ indices = pd.Series(df.index, index=df['title']).drop_duplicates()
16
+ idx = indices[title]
17
+
18
+ sim_scores = list(enumerate(linear_sim[idx]))
19
+ sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
20
+ top_movies_indices = [i[0] for i in sim_scores[1:31]]
21
+ top_movies = df[['title','popularity_score']].iloc[top_movies_indices]
22
+ top_movies = list(top_movies.sort_values('popularity_score',ascending = False).head(5)['title'])
23
+ top_movies_posters = [fetch_poster(mapping[title]) for title in top_movies ]
24
+ return top_movies, top_movies_posters
25
+
26
+ st.header('Movie Recommender System')
27
+ movies = pickle.load(open('df_popularity.pkl','rb'))
28
+ df_popularity = pd.DataFrame(movies)
29
+ tfidf_matrix = pickle.load(open('tfidf.pkl','rb'))
30
+ linear_sim = linear_kernel(tfidf_matrix, tfidf_matrix)
31
+ mapping = pickle.load(open('mapping.pkl','rb'))
32
+ movie_list = df_popularity['title'].values
33
+ selected_movie = st.selectbox(
34
+ "Type or select a movie from the dropdown",
35
+ movie_list
36
+ )
37
+
38
+ if st.button('Show Recommendation'):
39
+ recommended_movie_names,recommended_movie_posters = get_popular_recommendations(selected_movie ,linear_sim ,df_popularity)
40
+ col1, col2, col3, col4, col5 = st.columns(5)
41
+ with col1:
42
+ st.text(recommended_movie_names[0])
43
+ st.image(recommended_movie_posters[0])
44
+ with col2:
45
+ st.text(recommended_movie_names[1])
46
+ st.image(recommended_movie_posters[1])
47
+
48
+ with col3:
49
+ st.text(recommended_movie_names[2])
50
+ st.image(recommended_movie_posters[2])
51
+ with col4:
52
+ st.text(recommended_movie_names[3])
53
+ st.image(recommended_movie_posters[3])
54
+ with col5:
55
+ st.text(recommended_movie_names[4])
56
+ st.image(recommended_movie_posters[4])
57
+
df_popularity.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:069a76c21ea30c73af03256510a6b43170b3cf324cd3c41dbeef80bd77534b04
3
+ size 10316460
mapping.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3258fd12a04f6322a3a7df5f7c4cf69b1e5245c0a95f1391bc4df39d89657f69
3
+ size 1020592
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ scikit-learn
tfidf.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a4abd058c42eff9247e280c6e356c1af0a97ff2ea4cc812b0ecff4d34d24dfb
3
+ size 4574514