File size: 13,812 Bytes
56696a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import streamlit as st
st.set_page_config(layout="wide")
from annotated_text import annotated_text, annotation
import fitz
import os
import chromadb
import uuid
from pathlib import Path
import os
os.environ['OPENAI_API_KEY'] = os.environ['OPEN_API_KEY']
st.title("Contracts Multiple File Search ")
import pandas as pd
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.schema import Document
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
embedding = HuggingFaceEmbeddings(model_name='BAAI/bge-base-en-v1.5')
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-base')
import spacy
# Load the English model from SpaCy
nlp = spacy.load("en_core_web_md")
def util_upload_file_and_return_list_docs(uploaded_files):
#util_del_cwd()
list_docs = []
list_save_path = []
for uploaded_file in uploaded_files:
save_path = Path(os.getcwd(), uploaded_file.name)
with open(save_path, mode='wb') as w:
w.write(uploaded_file.getvalue())
#print('save_path:', save_path)
docs = fitz.open(save_path)
list_docs.append(docs)
list_save_path.append(save_path)
return(list_docs, list_save_path)
#### Helper Functions to Split using Rolling Window (recomm : use smaller rolling window )
def split_txt_file_synthetic_sentence_rolling(ctxt, sentence_size_in_chars, sliding_size_in_chars,debug=False):
sliding_size_in_chars = sentence_size_in_chars - sliding_size_in_chars
pos_start = 0
pos_end = len(ctxt)
final_return = []
if(debug):
print('pos_start : ',pos_start)
print('pos_end : ',pos_end)
if(pos_end<sentence_size_in_chars):
return([{'section_org_text':ctxt[pos_start:pos_end],'section_char_start':pos_start,'section_char_end':pos_end}])
if(sentence_size_in_chars<sliding_size_in_chars):
return(None)
stop_condition = False
start = pos_start
end = start + sentence_size_in_chars
mydict = {}
mydict['section_org_text'] = ctxt[start:end]
mydict['section_char_start'] = start
mydict['section_char_end'] = end
final_return.append(mydict)
#### First Time ENDS
while(stop_condition==False):
start = end - sliding_size_in_chars
end = start + sentence_size_in_chars
if(end>pos_end):
if(start<pos_end):
end = pos_end
mydict = {}
mydict['section_org_text'] = ctxt[start:end]
mydict['section_char_start'] = start
mydict['section_char_end'] = end
final_return.append(mydict)
stop_condition=True
else:
stop_condition=True
else:
mydict = {}
mydict['section_org_text'] = ctxt[start:end]
mydict['section_char_start'] = start
mydict['section_char_end'] = end
final_return.append(mydict)
if(debug):
print('start : ', start)
print('end : ', end)
return(final_return)
### helper to make string out of iw_status
# def util_get_list_page_and_passage(docs):
# page_documents = []
# passage_documents = []
# for txt_index, txt_page in enumerate(docs):
# page_document = txt_page.get_text()##.encode("utf8") # get plain text (is in UTF-8)
# page_documents.append(page_document)
# sections = split_txt_file_synthetic_sentence_rolling(page_document,700,200)
# for sub_sub_index, sub_sub_item in enumerate(sections):
# sub_text=sub_sub_item['section_org_text']
# passage_document = Document(page_content=sub_text, metadata={"page_index": txt_index})
# passage_documents.append(passage_document)
# return(page_documents,passage_documents)
def split_into_sentences_with_offsets(text):
"""
Splits a paragraph into sentences and returns them along with their start and end offsets.
:param text: The input text to be split into sentences.
:return: A list of tuples, each containing a sentence and its start and end offsets.
"""
doc = nlp(text)
return [(sent.text, sent.start_char, sent.end_char) for sent in doc.sents]
def util_get_list_page_and_passage(list_docs, list_save_path):
#page_documents = []
passage_documents = []
for ind_doc, docs in enumerate(list_docs):
for txt_index, txt_page in enumerate(docs):
page_document = txt_page.get_text()##.encode("utf8") # get plain text (is in UTF-8)
#page_documents.append(page_document)
sections = split_into_sentences_with_offsets(page_document)
for sub_sub_index, sub_sub_item in enumerate(sections):
sub_text=sub_sub_item[0]
passage_document = Document(page_content=sub_text, metadata={"page_content": page_document,"page_index": txt_index, "file_name" : str(list_save_path[ind_doc])})
passage_documents.append(passage_document)
return(passage_documents)
# def util_index_chromadb_passages():
# ##### PROCESSING
# # create client and a new collection
# collection_name = str(uuid.uuid4().hex)
# chroma_client = chromadb.EphemeralClient()
# chroma_collection = chroma_client.get_or_create_collection(collection_name)
# # define embedding function
# embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name="BAAI/bge-small-en"))
# vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
# return(chroma_client,chroma_collection,collection_name,vector_store,embed_model)
def util_get_only_content_inside_loop(page_no,page_documents):
for index, item in enumerate(page_documents):
if(page_documents[index].metadata['txt_page_index']==page_no):
return(page_documents[index].get_content())
return(None)
# def util_get_list_pageno_and_contents(page_documents,passage_documents,passage_nodes):
# ''' page no starts with index 1 '''
# return_value = []
# for index, item in enumerate(passage_nodes):
# page_no = passage_nodes[index].metadata['txt_page_index']
# page_content = util_get_only_content_inside_loop(page_no,page_documents)
# return_value.append((page_no+1,page_content))
# return(return_value)
def util_get_list_pageno_and_contents(some_query_passage,passage_documents,passage_nodes):
''' page no starts with index 1 '''
return_value = []
rescore = reranker.compute_score([[some_query_passage , x.page_content] for x in passage_nodes])
print('rescore :: ',rescore)
tmp_array = []
for i, x in enumerate(passage_nodes):
tmp_dict = {"passage_content":x.page_content,
"page_no":int(x.metadata['page_index'])+1,
"page_content":str(x.metadata['page_content']),
"file_name": str(x.metadata['file_name']),
"score" : float(rescore[i])}
tmp_array.append(tmp_dict)
df = pd.DataFrame(tmp_array)
df = df.sort_values(by='score', ascending=False)
df = df.drop_duplicates(subset=['file_name'], keep='first')
df = df[["passage_content","file_name","page_no","page_content","score"]]
return(df)
# # def util_openai_extract_entity(example_passage, example_entity, page_content):
# # import openai
# # openai.api_key = os.environ['OPENAI_API_KEY']
# # content = """Find the Entity based on Text . Return empty string if Entity does not exists. Here is one example below
# # Text: """ + example_passage + """
# # Entity: """ + example_entity + """
# # Text: """ + page_content + """
# # Entity: """
# # return_value = openai.ChatCompletion.create(model="gpt-4",temperature=0.0001,messages=[{"role": "user", "content": content},])
# # return(str(return_value['choices'][0]['message']['content']))
def util_openai_extract_clause(example_prompt, page_content):
import openai
openai.api_key = os.environ['OPENAI_API_KEY']
content = example_prompt
content = content + "\n Answer precisely; do not add anything extra, and try to locate the answer in the below context \n context: "
return_value = openai.ChatCompletion.create(model="gpt-3.5-turbo",temperature=0.0001,messages=[{"role": "user", "content": content + "\n" + page_content},])
return(str(return_value['choices'][0]['message']['content']))
def util_openai_hyde(example_prompt):
import openai
openai.api_key = os.environ['OPENAI_API_KEY']
content = example_prompt
return_value = openai.ChatCompletion.create(model="gpt-3.5-turbo",temperature=0.0001,messages=[
{"role": "system", "content": "You are a legal contract lawyer. generate a summary from below text " + "\n"},
{"role": "user", "content": example_prompt + "\n"},
]
)
return(str(return_value['choices'][0]['message']['content']))
def util_openai_format (example_passage, page_content):
'''
annotated_text(" ",annotation("ENTITY : ", str(page_no)),)
'''
if(True):
found_value = util_openai_extract_clause(example_passage, page_content)
if(len(found_value)>0):
found_value = found_value.strip()
first_index = page_content.find(found_value)
if(first_index!=-1):
print('first_index : ',first_index)
print('found_value : ',found_value)
return(annotated_text(page_content[0:first_index-1],annotation(found_value, " FOUND ENTITY "),page_content[first_index+len(found_value):]))
return(annotated_text(page_content))
def util_openai_modify_prompt(example_prompt, page_content):
import openai
openai.api_key = os.environ['OPENAI_API_KEY']
my_prompt = """Expand the original Query to show exact resuls for extraction\n
Query: """ + example_prompt # + """\nDocument: """ + page_content + """ """
return_value = openai.ChatCompletion.create(model="gpt-4",temperature=0.0001,messages=[{"role": "user", "content": my_prompt},])
return(str(return_value['choices'][0]['message']['content']))
# def create_bm25_page_rank(page_list_retrieve, page_query):
# """ page_corpus : array of page text , page_query is user query """
# from operator import itemgetter
# from rank_bm25 import BM25Okapi
# tokenized_corpus = [doc.split(" ") for x, doc in page_list_retrieve]
# tokenized_query = page_query.split(" ")
# bm25 = BM25Okapi(tokenized_corpus)
# doc_scores = bm25.get_scores(tokenized_query).tolist()
# tmp_list = []
# for index, item in enumerate(page_list_retrieve):
# tmp_list.append((item[0], item[1],doc_scores[index]))
# tmp_list = sorted(tmp_list, key=itemgetter(2), reverse=True)
# return(tmp_list)
passage_documents = []
if(True):
with st.form("my_form"):
multi = '''1. Download and Upload Multiple contracts (PDF)
e.g. https://www.barc.gov.in/tenders/GCC-LPS.pdf
e.g. https://www.montrosecounty.net/DocumentCenter/View/823/Sample-Construction-Contract
'''
st.markdown(multi)
multi = '''2. Insert Query to search or find similar language '''
st.markdown(multi)
multi = '''3. Press Index.'''
st.markdown(multi)
multi = '''
** Attempt is made for appropriate page and passage retrieval ** \n
'''
st.markdown(multi)
#uploaded_file = st.file_uploader("Choose a file")
list_docs = []
list_save_path = []
uploaded_files = st.file_uploader("Choose file(s)", accept_multiple_files=True)
print('uploaded_files ', uploaded_files)
single_example_passage = st.text_area('Enter Query or similar passage Here and press Chat',"What is Governing Law?")
submitted = st.form_submit_button("Index and Answer")
if submitted and (uploaded_files is not None):
list_docs, list_save_path = util_upload_file_and_return_list_docs(uploaded_files)
passage_documents = util_get_list_page_and_passage(list_docs, list_save_path)
# st.button("Chat")
# if st.button('Chat'):
bm25_retriever = BM25Retriever.from_documents(passage_documents)
bm25_retriever.k = 2
chroma_vectorstore = Chroma.from_documents(passage_documents, embedding)
chroma_retriever = chroma_vectorstore.as_retriever(search_kwargs={"k": 2})
ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, chroma_retriever],weights=[0.25, 0.75])
passage_nodes = ensemble_retriever.get_relevant_documents(single_example_passage)
print('len(passage_nodes):', len(passage_nodes))
df = util_get_list_pageno_and_contents(single_example_passage,passage_documents,passage_nodes)
st.write(df)
# print('len(page_list_retrieve):', len(page_list_retrieve))
# if(len(page_list_retrieve)>0):
# page_list_retrieve = list(set(page_list_retrieve))
# for iindex in page_list_retrieve:
# page_no = iindex[0]
# page_content = iindex[1]
# annotated_text(" ",annotation("RELEVANT PAGENO : ", str(page_no), font_family="Comic Sans MS", border="2px dashed red"),)
# util_openai_format(single_example_passage, page_content)
# annotated_text(" ",annotation("RELEVANT PASSAGE : ", "", font_family="Comic Sans MS", border="2px dashed red"),)
# st.write(found_passage)
# pchroma_client = chromadb.Client()
# for citem in pchroma_client.list_collections():
# print(citem.name) |