scholarly360's picture
Update app.py
9291dbd verified
raw
history blame
6.57 kB
import streamlit as st
st.set_page_config(layout="wide")
from annotated_text import annotated_text, annotation
import fitz
import os
import chromadb
import uuid
from pathlib import Path
import os
st.title("Contracts Classification ")
import pandas as pd
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.schema import Document
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from setfit import SetFitModel
# Download from the πŸ€— Hub
clause_model = SetFitModel.from_pretrained("scholarly360/setfit-contracts-clauses")
import spacy
# Load the English model from SpaCy
nlp = spacy.load("en_core_web_md")
def split_into_sentences_with_offsets(text):
"""
Splits a paragraph into sentences and returns them along with their start and end offsets.
:param text: The input text to be split into sentences.
:return: A list of tuples, each containing a sentence and its start and end offsets.
"""
doc = nlp(text)
return [(sent.text, sent.start_char, sent.end_char) for sent in doc.sents]
def util_upload_file_and_return_list_docs(uploaded_files):
#util_del_cwd()
list_docs = []
list_save_path = []
for uploaded_file in uploaded_files:
save_path = Path(os.getcwd(), uploaded_file.name)
with open(save_path, mode='wb') as w:
w.write(uploaded_file.getvalue())
#print('save_path:', save_path)
docs = fitz.open(save_path)
list_docs.append(docs)
list_save_path.append(save_path)
return(list_docs, list_save_path)
#### Helper Functions to Split using Rolling Window (recomm : use smaller rolling window )
def split_txt_file_synthetic_sentence_rolling(ctxt, sentence_size_in_chars, sliding_size_in_chars,debug=False):
sliding_size_in_chars = sentence_size_in_chars - sliding_size_in_chars
pos_start = 0
pos_end = len(ctxt)
final_return = []
if(debug):
print('pos_start : ',pos_start)
print('pos_end : ',pos_end)
if(pos_end<sentence_size_in_chars):
return([{'section_org_text':ctxt[pos_start:pos_end],'section_char_start':pos_start,'section_char_end':pos_end}])
if(sentence_size_in_chars<sliding_size_in_chars):
return(None)
stop_condition = False
start = pos_start
end = start + sentence_size_in_chars
mydict = {}
mydict['section_org_text'] = ctxt[start:end]
mydict['section_char_start'] = start
mydict['section_char_end'] = end
final_return.append(mydict)
#### First Time ENDS
while(stop_condition==False):
start = end - sliding_size_in_chars
end = start + sentence_size_in_chars
if(end>pos_end):
if(start<pos_end):
end = pos_end
mydict = {}
mydict['section_org_text'] = ctxt[start:end]
mydict['section_char_start'] = start
mydict['section_char_end'] = end
final_return.append(mydict)
stop_condition=True
else:
stop_condition=True
else:
mydict = {}
mydict['section_org_text'] = ctxt[start:end]
mydict['section_char_start'] = start
mydict['section_char_end'] = end
final_return.append(mydict)
if(debug):
print('start : ', start)
print('end : ', end)
return(final_return)
def util_get_list_page_and_passage(list_docs, list_save_path):
#page_documents = []
passage_documents = []
for ind_doc, docs in enumerate(list_docs):
for txt_index, txt_page in enumerate(docs):
page_document = txt_page.get_text()##.encode("utf8") # get plain text (is in UTF-8)
#page_documents.append(page_document)
sections = split_into_sentences_with_offsets(page_document)
for sub_sub_index, sub_sub_item in enumerate(sections):
sub_text=sub_sub_item[0]
passage_document = Document(page_content=sub_text, metadata={"page_content": page_document,"page_index": txt_index, "file_name" : str(list_save_path[ind_doc])})
passage_documents.append(passage_document)
return(passage_documents)
# def util_index_chromadb_passages():
# ##### PROCESSING
# # create client and a new collection
# collection_name = str(uuid.uuid4().hex)
# chroma_client = chromadb.EphemeralClient()
# chroma_collection = chroma_client.get_or_create_collection(collection_name)
# # define embedding function
# embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name="BAAI/bge-small-en"))
# vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
# return(chroma_client,chroma_collection,collection_name,vector_store,embed_model)
def util_get_only_content_inside_loop(page_no,page_documents):
for index, item in enumerate(page_documents):
if(page_documents[index].metadata['txt_page_index']==page_no):
return(page_documents[index].get_content())
return(None)
passage_documents = []
with st.form("my_form"):
multi = '''1. Download and Upload Multiple contracts
e.g. https://www.barc.gov.in/tenders/GCC-LPS.pdf
e.g. https://www.montrosecounty.net/DocumentCenter/View/823/Sample-Construction-Contract
'''
st.markdown(multi)
multi = ''' '''
st.markdown(multi)
multi = '''2. Press Calculate.'''
st.markdown(multi)
multi = '''
** Attempt is made sentence Wise ** \n
'''
st.markdown(multi)
#uploaded_file = st.file_uploader("Choose a file")
list_docs = []
list_save_path = []
uploaded_files = st.file_uploader("Choose file(s)", accept_multiple_files=True)
print('uploaded_files ', uploaded_files)
submitted = st.form_submit_button("Calculate")
my_list_structure = []
import pandas as pd
if submitted and (uploaded_files is not None):
list_docs, list_save_path = util_upload_file_and_return_list_docs(uploaded_files)
# print('list_docs ' ,list_docs)
# print('list_save_path ' , list_save_path)
passage_documents = util_get_list_page_and_passage(list_docs, list_save_path)
for passage_document in passage_documents:
text = passage_document.page_content
metadata = passage_document.metadata
preds = clause_model(text)
my_list_structure.append({"text": text, "metadata": metadata,"preds":preds })
df = pd.DataFrame(my_list_structure)
df