Spaces:
Running
on
L4
Running
on
L4
update.
Browse files- .gitattributes +0 -31
- app.py +1 -1
- app_2.py +306 -0
.gitattributes
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
23 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -276,7 +276,7 @@ demo = gr.Interface(
|
|
276 |
gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
|
277 |
gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
|
278 |
], [
|
279 |
-
gr.Image(type="numpy", label="Output")
|
280 |
],
|
281 |
title=title,
|
282 |
description=description,
|
|
|
276 |
gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
|
277 |
gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
|
278 |
], [
|
279 |
+
gr.Image(type="numpy", label="Output").style(height='auto')
|
280 |
],
|
281 |
title=title,
|
282 |
description=description,
|
app_2.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is used for deploying hugging face demo:
|
3 |
+
https://huggingface.co/spaces/sczhou/CodeFormer
|
4 |
+
"""
|
5 |
+
|
6 |
+
import sys
|
7 |
+
sys.path.append('CodeFormer')
|
8 |
+
import os
|
9 |
+
import cv2
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import gradio as gr
|
13 |
+
from itertools import chain
|
14 |
+
|
15 |
+
from torchvision.transforms.functional import normalize
|
16 |
+
|
17 |
+
from basicsr.utils import imwrite, img2tensor, tensor2img
|
18 |
+
from basicsr.utils.download_util import load_file_from_url
|
19 |
+
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
20 |
+
from facelib.utils.misc import is_gray
|
21 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
22 |
+
from basicsr.utils.realesrgan_utils import RealESRGANer
|
23 |
+
|
24 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
25 |
+
|
26 |
+
|
27 |
+
os.system("pip freeze")
|
28 |
+
|
29 |
+
pretrain_model_url = {
|
30 |
+
'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
|
31 |
+
'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
|
32 |
+
'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
|
33 |
+
'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
|
34 |
+
}
|
35 |
+
# download weights
|
36 |
+
if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'):
|
37 |
+
load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None)
|
38 |
+
if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'):
|
39 |
+
load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
|
40 |
+
if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'):
|
41 |
+
load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
|
42 |
+
if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'):
|
43 |
+
load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None)
|
44 |
+
|
45 |
+
# download images
|
46 |
+
torch.hub.download_url_to_file(
|
47 |
+
'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png',
|
48 |
+
'01.png')
|
49 |
+
torch.hub.download_url_to_file(
|
50 |
+
'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg',
|
51 |
+
'02.jpg')
|
52 |
+
torch.hub.download_url_to_file(
|
53 |
+
'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg',
|
54 |
+
'03.jpg')
|
55 |
+
torch.hub.download_url_to_file(
|
56 |
+
'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg',
|
57 |
+
'04.jpg')
|
58 |
+
torch.hub.download_url_to_file(
|
59 |
+
'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg',
|
60 |
+
'05.jpg')
|
61 |
+
|
62 |
+
def imread(img_path):
|
63 |
+
img = cv2.imread(img_path)
|
64 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
65 |
+
return img
|
66 |
+
|
67 |
+
# set enhancer with RealESRGAN
|
68 |
+
def set_realesrgan():
|
69 |
+
half = True if torch.cuda.is_available() else False
|
70 |
+
model = RRDBNet(
|
71 |
+
num_in_ch=3,
|
72 |
+
num_out_ch=3,
|
73 |
+
num_feat=64,
|
74 |
+
num_block=23,
|
75 |
+
num_grow_ch=32,
|
76 |
+
scale=2,
|
77 |
+
)
|
78 |
+
upsampler = RealESRGANer(
|
79 |
+
scale=2,
|
80 |
+
model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
|
81 |
+
model=model,
|
82 |
+
tile=400,
|
83 |
+
tile_pad=40,
|
84 |
+
pre_pad=0,
|
85 |
+
half=half,
|
86 |
+
)
|
87 |
+
return upsampler
|
88 |
+
|
89 |
+
upsampler = set_realesrgan()
|
90 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
91 |
+
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
|
92 |
+
dim_embd=512,
|
93 |
+
codebook_size=1024,
|
94 |
+
n_head=8,
|
95 |
+
n_layers=9,
|
96 |
+
connect_list=["32", "64", "128", "256"],
|
97 |
+
).to(device)
|
98 |
+
ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
|
99 |
+
checkpoint = torch.load(ckpt_path)["params_ema"]
|
100 |
+
codeformer_net.load_state_dict(checkpoint)
|
101 |
+
codeformer_net.eval()
|
102 |
+
|
103 |
+
os.makedirs('output', exist_ok=True)
|
104 |
+
|
105 |
+
def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
|
106 |
+
"""Run a single prediction on the model"""
|
107 |
+
try: # global try
|
108 |
+
# take the default setting for the demo
|
109 |
+
has_aligned = False
|
110 |
+
only_center_face = False
|
111 |
+
draw_box = False
|
112 |
+
detection_model = "retinaface_resnet50"
|
113 |
+
print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity)
|
114 |
+
|
115 |
+
if background_enhance is None: background_enhance = True
|
116 |
+
if face_upsample is None: face_upsample = True
|
117 |
+
if upscale is None: upscale = 2
|
118 |
+
|
119 |
+
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
120 |
+
print('\timage size:', img.shape)
|
121 |
+
|
122 |
+
upscale = int(upscale) # convert type to int
|
123 |
+
if upscale > 4: # avoid memory exceeded due to too large upscale
|
124 |
+
upscale = 4
|
125 |
+
if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
|
126 |
+
upscale = 2
|
127 |
+
if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
|
128 |
+
upscale = 1
|
129 |
+
background_enhance = False
|
130 |
+
face_upsample = False
|
131 |
+
|
132 |
+
face_helper = FaceRestoreHelper(
|
133 |
+
upscale,
|
134 |
+
face_size=512,
|
135 |
+
crop_ratio=(1, 1),
|
136 |
+
det_model=detection_model,
|
137 |
+
save_ext="png",
|
138 |
+
use_parse=True,
|
139 |
+
device=device,
|
140 |
+
)
|
141 |
+
bg_upsampler = upsampler if background_enhance else None
|
142 |
+
face_upsampler = upsampler if face_upsample else None
|
143 |
+
|
144 |
+
if has_aligned:
|
145 |
+
# the input faces are already cropped and aligned
|
146 |
+
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
147 |
+
face_helper.is_gray = is_gray(img, threshold=5)
|
148 |
+
if face_helper.is_gray:
|
149 |
+
print('\tgrayscale input: True')
|
150 |
+
face_helper.cropped_faces = [img]
|
151 |
+
else:
|
152 |
+
face_helper.read_image(img)
|
153 |
+
# get face landmarks for each face
|
154 |
+
num_det_faces = face_helper.get_face_landmarks_5(
|
155 |
+
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
|
156 |
+
)
|
157 |
+
print(f'\tdetect {num_det_faces} faces')
|
158 |
+
# align and warp each face
|
159 |
+
face_helper.align_warp_face()
|
160 |
+
|
161 |
+
# face restoration for each cropped face
|
162 |
+
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
163 |
+
# prepare data
|
164 |
+
cropped_face_t = img2tensor(
|
165 |
+
cropped_face / 255.0, bgr2rgb=True, float32=True
|
166 |
+
)
|
167 |
+
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
168 |
+
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
169 |
+
|
170 |
+
try:
|
171 |
+
with torch.no_grad():
|
172 |
+
output = codeformer_net(
|
173 |
+
cropped_face_t, w=codeformer_fidelity, adain=True
|
174 |
+
)[0]
|
175 |
+
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
176 |
+
del output
|
177 |
+
torch.cuda.empty_cache()
|
178 |
+
except RuntimeError as error:
|
179 |
+
print(f"Failed inference for CodeFormer: {error}")
|
180 |
+
restored_face = tensor2img(
|
181 |
+
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
|
182 |
+
)
|
183 |
+
|
184 |
+
restored_face = restored_face.astype("uint8")
|
185 |
+
face_helper.add_restored_face(restored_face)
|
186 |
+
|
187 |
+
# paste_back
|
188 |
+
if not has_aligned:
|
189 |
+
# upsample the background
|
190 |
+
if bg_upsampler is not None:
|
191 |
+
# Now only support RealESRGAN for upsampling background
|
192 |
+
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
|
193 |
+
else:
|
194 |
+
bg_img = None
|
195 |
+
face_helper.get_inverse_affine(None)
|
196 |
+
# paste each restored face to the input image
|
197 |
+
if face_upsample and face_upsampler is not None:
|
198 |
+
restored_img = face_helper.paste_faces_to_input_image(
|
199 |
+
upsample_img=bg_img,
|
200 |
+
draw_box=draw_box,
|
201 |
+
face_upsampler=face_upsampler,
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
restored_img = face_helper.paste_faces_to_input_image(
|
205 |
+
upsample_img=bg_img, draw_box=draw_box
|
206 |
+
)
|
207 |
+
|
208 |
+
# save restored img
|
209 |
+
save_path = f'output/out.png'
|
210 |
+
imwrite(restored_img, str(save_path))
|
211 |
+
|
212 |
+
restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
|
213 |
+
return restored_img
|
214 |
+
except Exception as error:
|
215 |
+
print('Global exception', error)
|
216 |
+
return None, None
|
217 |
+
|
218 |
+
|
219 |
+
title = "CodeFormer: Robust Face Restoration and Enhancement Network"
|
220 |
+
|
221 |
+
description = r"""<center><img src='https://user-images.githubusercontent.com/14334509/189166076-94bb2cac-4f4e-40fb-a69f-66709e3d98f5.png' alt='CodeFormer logo'></center>
|
222 |
+
<br>
|
223 |
+
<b>Official Gradio demo</b> for <a href='https://github.com/sczhou/CodeFormer' target='_blank'><b>Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)</b></a><br>
|
224 |
+
π₯ CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.<br>
|
225 |
+
π€ Try CodeFormer for improved stable-diffusion generation!<br>
|
226 |
+
"""
|
227 |
+
|
228 |
+
article = r"""
|
229 |
+
If CodeFormer is helpful, please help to β the <a href='https://github.com/sczhou/CodeFormer' target='_blank'>Github Repo</a>. Thanks!
|
230 |
+
[![GitHub Stars](https://img.shields.io/github/stars/sczhou/CodeFormer?style=social)](https://github.com/sczhou/CodeFormer)
|
231 |
+
|
232 |
+
---
|
233 |
+
|
234 |
+
π **Citation**
|
235 |
+
|
236 |
+
If our work is useful for your research, please consider citing:
|
237 |
+
```bibtex
|
238 |
+
@inproceedings{zhou2022codeformer,
|
239 |
+
author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
|
240 |
+
title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
|
241 |
+
booktitle = {NeurIPS},
|
242 |
+
year = {2022}
|
243 |
+
}
|
244 |
+
```
|
245 |
+
|
246 |
+
π **License**
|
247 |
+
|
248 |
+
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>.
|
249 |
+
Redistribution and use for non-commercial purposes should follow this license.
|
250 |
+
|
251 |
+
π§ **Contact**
|
252 |
+
|
253 |
+
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
|
254 |
+
|
255 |
+
π€ **Find Me:**
|
256 |
+
<style type="text/css">
|
257 |
+
td {
|
258 |
+
padding-right: 0px !important;
|
259 |
+
}
|
260 |
+
</style>
|
261 |
+
|
262 |
+
<table>
|
263 |
+
<tr>
|
264 |
+
<td><a href="https://github.com/sczhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a></td>
|
265 |
+
<td><a href="https://twitter.com/ShangchenZhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a></td>
|
266 |
+
</tr>
|
267 |
+
</table>
|
268 |
+
|
269 |
+
<center><img src='https://api.infinitescript.com/badgen/count?name=sczhou/CodeFormer<ext=Visitors&color=6dc9aa' alt='visitors'></center>
|
270 |
+
"""
|
271 |
+
|
272 |
+
with gr.Blocks() as demo:
|
273 |
+
gr.Markdown(title)
|
274 |
+
gr.Markdown(description)
|
275 |
+
with gr.Box():
|
276 |
+
with gr.Column():
|
277 |
+
input_img = gr.Image(type="filepath", label="Input")
|
278 |
+
background_enhance = gr.Checkbox(value=True, label="Background_Enhance")
|
279 |
+
face_enhance = gr.Checkbox(value=True, label="Face_Upsample")
|
280 |
+
upscale_factor = gr.Number(value=2, label="Rescaling_Factor (up to 4)")
|
281 |
+
codeformer_fidelity = gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
|
282 |
+
submit = gr.Button('Enhance Image')
|
283 |
+
with gr.Column():
|
284 |
+
output_img = gr.Image(type="numpy", label="Output").style(height='auto')
|
285 |
+
|
286 |
+
inps = [input_img, background_enhance, face_enhance, upscale_factor, codeformer_fidelity]
|
287 |
+
submit.click(fn=inference, inputs=inps, outputs=[output_img])
|
288 |
+
|
289 |
+
ex = gr.Examples([
|
290 |
+
['01.png', True, True, 2, 0.7],
|
291 |
+
['02.jpg', True, True, 2, 0.7],
|
292 |
+
['03.jpg', True, True, 2, 0.7],
|
293 |
+
['04.jpg', True, True, 2, 0.1],
|
294 |
+
['05.jpg', True, True, 2, 0.1]
|
295 |
+
],
|
296 |
+
fn=inference,
|
297 |
+
inputs=inps,
|
298 |
+
outputs=[output_img],
|
299 |
+
cache_examples=True)
|
300 |
+
|
301 |
+
gr.Markdown(article)
|
302 |
+
|
303 |
+
|
304 |
+
DEBUG = os.getenv('DEBUG') == '1'
|
305 |
+
demo.queue(api_open=False, concurrency_count=2, max_size=10)
|
306 |
+
demo.launch(debug=DEBUG)
|