Sébastien De Greef commited on
Commit
ee2ab6d
1 Parent(s): 23c18c8

feat: Add platforms.qmd file with a comprehensive list of online AI platforms, dataset providers, model zoos, and related resources

Browse files
.gitignore CHANGED
@@ -4,3 +4,4 @@
4
  .venv/**
5
  src/_site/
6
  .venv_win/
 
 
4
  .venv/**
5
  src/_site/
6
  .venv_win/
7
+ **/*_files/
src/_quarto.yml CHANGED
@@ -53,6 +53,13 @@ website:
53
  - href: vision/tasks.qmd
54
  text: "Tasks"
55
  - section: "Image Generation Models"
 
 
 
 
 
 
 
56
 
57
  format:
58
  html:
 
53
  - href: vision/tasks.qmd
54
  text: "Tasks"
55
  - section: "Image Generation Models"
56
+
57
+ - section: "Tools and Frameworks"
58
+ contents:
59
+ - href: tools/frameworks.qmd
60
+ text: "Frameworks"
61
+ - href: tools/platforms.qmd
62
+ text: "Platforms"
63
 
64
  format:
65
  html:
src/tools/frameworks.qmd CHANGED
@@ -4,115 +4,113 @@ These are all libraries and tools I use almost on daily base depending on the pr
4
 
5
  # Agent Builders
6
 
7
- **CrewAI** (CrewAI): The most advanced opensource Agents builder framework
8
 
9
- **Autogen** (Microsoft): An agent builder framework with a UI
10
 
11
  # Deep Learning
12
 
13
- **TensorFlow** (Google): An open-source machine learning framework
14
 
15
- **PyTorch** (Facebook): An open-source machine learning framework
16
 
17
- **Keras** (Google): A high-level neural networks API
18
 
19
- **CNTK** (Microsoft): A deep learning framework
20
 
21
  # Natural Language Processing (NLP)**
22
 
23
- **NLTK** (Stanford University): A comprehensive NLP library
24
 
25
- **spaCy** (Explosion AI): A modern NLP library
26
 
27
- **Stanford CoreNLP** (Stanford University): A Java library for NLP
28
 
29
- **Transformers** (Hugging Face): A library for natural language understanding and generation
30
 
31
  # Computer Vision**
32
 
33
- **OpenCV** (OpenCV.org): A computer vision library
34
 
35
- **Pillow** (Python Imaging Library): A Python imaging library
36
 
37
- **scikit-image** (Scikit-learn): A library for image processing
38
 
39
- **TensorFlow Computer Vision** (Google): A computer vision library
40
 
41
- **PyTorch Vision** (Facebook): A computer vision library
42
 
43
- **Keras Applications** (Google): A collection of pre-built computer vision models
44
 
45
  # Reinforcement Learning
46
 
47
- **Gym** (OpenAI): A reinforcement learning environment
48
 
49
- **Baselines** (OpenAI): A set of reinforcement learning algorithms
50
 
51
- **RLlib** (UBC): A reinforcement learning library
52
 
53
- **TensorFlow Agents** (Google): A reinforcement learning library
54
 
55
- **Ray RLlib** (UC Berkeley): A reinforcement learning library
56
 
57
  # Data Science and Analytics
58
 
59
- **Pandas** (Wes McKinney): A library for data manipulation and analysis
60
 
61
- **NumPy** (Travis Oliphant): A library for numerical computing
62
 
63
- **Matplotlib** (John Hunter): A plotting library
64
 
65
- **Scikit-learn** (David Cournapeau): A machine learning library
66
 
67
- **Statsmodels** (Statsmodels.org): A statistical modeling library
68
 
69
- **Bokeh** (Continuum Analytics): A visualization library
70
 
71
- **Seaborn** (Michael Waskom): A statistical data visualization library
72
 
73
  # Other
74
 
75
- **SciPy** (SciPy.org): A scientific computing library
76
 
77
- **Matlab** (MathWorks): A high-level technical computing language
78
 
79
- **Julia** (JuliaLang.org): A high-performance language for AI and ML
80
 
81
- **R** (R Foundation): A programming language for statistical computing
82
 
83
  # MLOps
84
 
85
- **Tensorboard**
86
 
87
- **AIM**
88
 
89
- **LangSmith**
90
 
91
- **AgentOps**
92
 
93
  # Runners
94
 
95
- **Ollama**
96
- **LLama.cpp**
97
- **Tranformers**
98
 
99
  # Training/ Fine-Tuning
100
 
101
- **Unsloth**
102
 
103
- **Keras**
104
 
105
- **Torch**
106
 
107
- **OpenAI Gym**
108
 
109
- **Stable-Baselines**
110
 
111
 
112
  # Platforms - Hosting - Model Zoo
113
 
114
- **HuggingFace**
115
-
116
- **Kaggle**
117
-
118
 
 
 
4
 
5
  # Agent Builders
6
 
7
+ * **CrewAI** (CrewAI): The most advanced opensource Agents builder framework
8
 
9
+ * **Autogen** (Microsoft): An agent builder framework with a UI
10
 
11
  # Deep Learning
12
 
13
+ * **TensorFlow** (Google): An open-source machine learning framework
14
 
15
+ * **PyTorch** (Facebook): An open-source machine learning framework
16
 
17
+ * **Keras** (Google): A high-level neural networks API
18
 
19
+ * **CNTK** (Microsoft): A deep learning framework
20
 
21
  # Natural Language Processing (NLP)**
22
 
23
+ * **NLTK** (Stanford University): A comprehensive NLP library
24
 
25
+ * **spaCy** (Explosion AI): A modern NLP library
26
 
27
+ * **Stanford CoreNLP** (Stanford University): A Java library for NLP
28
 
29
+ * **Transformers** (Hugging Face): A library for natural language understanding and generation
30
 
31
  # Computer Vision**
32
 
33
+ * **OpenCV** (OpenCV.org): A computer vision library
34
 
35
+ * **Pillow** (Python Imaging Library): A Python imaging library
36
 
37
+ * **scikit-image** (Scikit-learn): A library for image processing
38
 
39
+ * **TensorFlow Computer Vision** (Google): A computer vision library
40
 
41
+ * **PyTorch Vision** (Facebook): A computer vision library
42
 
43
+ * **Keras Applications** (Google): A collection of pre-built computer vision models
44
 
45
  # Reinforcement Learning
46
 
47
+ * **Gym** (OpenAI): A reinforcement learning environment
48
 
49
+ * **Baselines** (OpenAI): A set of reinforcement learning algorithms
50
 
51
+ * **RLlib** (UBC): A reinforcement learning library
52
 
53
+ * **TensorFlow Agents** (Google): A reinforcement learning library
54
 
55
+ * **Ray RLlib** (UC Berkeley): A reinforcement learning library
56
 
57
  # Data Science and Analytics
58
 
59
+ * **Pandas** (Wes McKinney): A library for data manipulation and analysis
60
 
61
+ * **NumPy** (Travis Oliphant): A library for numerical computing
62
 
63
+ * **Matplotlib** (John Hunter): A plotting library
64
 
65
+ * **Scikit-learn** (David Cournapeau): A machine learning library
66
 
67
+ * **Statsmodels** (Statsmodels.org): A statistical modeling library
68
 
69
+ * **Bokeh** (Continuum Analytics): A visualization library
70
 
71
+ * **Seaborn** (Michael Waskom): A statistical data visualization library
72
 
73
  # Other
74
 
75
+ * **SciPy** (SciPy.org): A scientific computing library
76
 
77
+ * **Matlab** (MathWorks): A high-level technical computing language
78
 
79
+ * **Julia** (JuliaLang.org): A high-performance language for AI and ML
80
 
81
+ * **R** (R Foundation): A programming language for statistical computing
82
 
83
  # MLOps
84
 
85
+ * **Tensorboard**
86
 
87
+ * **AIM**
88
 
89
+ * **LangSmith**
90
 
91
+ * **AgentOps**
92
 
93
  # Runners
94
 
95
+ * **Ollama**
96
+ * **LLama.cpp**
97
+ * **Tranformers**
98
 
99
  # Training/ Fine-Tuning
100
 
101
+ * **Unsloth**
102
 
103
+ * **Keras**
104
 
105
+ * **Torch**
106
 
107
+ * **OpenAI Gym**
108
 
109
+ * **Stable-Baselines**
110
 
111
 
112
  # Platforms - Hosting - Model Zoo
113
 
114
+ * **HuggingFace**
 
 
 
115
 
116
+ * **Kaggle**
src/tools/platforms.qmd ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Here is a more comprehensive list of online AI platforms, dataset providers, model zoos, and related resources:
2
+
3
+ ## Online AI Platforms
4
+ - [**Hugging Face**](https://huggingface.co/): A collaborative platform primarily focused on natural language processing (NLP), offering a range of pre-trained language models, tools, and services.
5
+ - [**Kaggle**](https://www.kaggle.com/): A comprehensive platform for data science and artificial intelligence, hosting a wide variety of competitions with lucrative prizes.
6
+ - [**Amazon Lex**](https://aws.amazon.com/lex/): Enables developers to build conversational chatbots quickly without deep learning expertise.
7
+ - [**Metaflow**](https://metaflow.org/): A human-friendly Python library for building and managing real-life data science projects, originally developed at Netflix.
8
+ - [**MLflow**](https://mlflow.org/): An open-source platform to manage the ML lifecycle, including experimentation, reproducibility, and deployment.
9
+ - [**Comet.ml**](https://www.comet.com/site/): Enables data scientists and teams to track, compare, explain, and optimize experiments and models across the model's lifecycle.
10
+ - [**Weights and Biases W&B**](https://wandb.ai/site): W&B is an AI developer platform that helps streamline the machine learning (ML) workflow from end to end.
11
+ - [**Neptune.ai**](https://neptune.ai/): Manages all model building metadata in a single place.
12
+ - [**FloydHub**](https://github.com/floydhub/): A platform for deploying deep learning models, allowing users to focus on the model while they handle deployment.
13
+ - [**Google Cloud AI Platform**](https://cloud.google.com/products/ai/): Provides a suite of tools and services for building, deploying, and managing machine learning models at scale.
14
+ - [**Microsoft Azure Machine Learning**](https://azure.microsoft.com/en-us/products/machine-learning/): A cloud-based platform that provides tools and services for building, deploying, and managing machine learning models.
15
+ - [**Databricks**](https://www.databricks.com/): A unified data analytics platform that supports the entire machine learning lifecycle, from data preparation to model deployment.
16
+ - [**Vertex AI**](https://cloud.google.com/vertex-ai): Google's managed machine learning platform that simplifies the process of building, deploying, and managing ML models.
17
+ - [**Amazon SageMaker**](https://aws.amazon.com/sagemaker/): A fully managed machine learning service that enables developers and data scientists to build, train, and deploy ML models quickly.
18
+
19
+ ## Dataset Providers
20
+ - [**Hugging Face**](https://huggingface.co/datasets): A collection of datasets hosted on the Hugging Face platform, primarily focused on natural language processing.
21
+ - [**Kaggle**](https://www.kaggle.com/datasets): A vast repository of datasets available on the Kaggle platform.
22
+ - [**OpenML**](https://www.openml.org/search?type=data&sort=runs&status=active): An open science platform that provides a large collection of datasets, tasks, and experiments for machine learning.
23
+ - [**Amazon Web Services (AWS) Open Data**](https://aws.amazon.com/opendata/): A collection of publicly available datasets hosted on AWS for use in machine learning and data analysis.
24
+ - [**Microsoft Azure Open Datasets**](https://azure.microsoft.com/en-us/products/open-datasets/): A collection of high-value public datasets hosted on Azure for use in machine learning and data analysis.
25
+ - [**Google Cloud Public Datasets**](https://cloud.google.com/datasets): A collection of publicly available datasets hosted on Google Cloud for use in machine learning and data analysis.