File size: 25,013 Bytes
cdcfdd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
import math
import os
from typing import Optional, Tuple, Union
from einops import rearrange
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
from diffusers.models.attention_processor import SpatialNorm
from allegro.models.vae.modules import DownEncoderBlock3D, UNetMidBlock3DConv, UpDecoderBlock3D
class Encoder3D(nn.Module):
def __init__(
self,
in_channels=3,
out_channels=3,
num_blocks=4,
blocks_temp_li=[False, False, False, False],
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
double_z=True,
):
super().__init__()
self.layers_per_block = layers_per_block
self.blocks_temp_li = blocks_temp_li
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[0],
kernel_size=3,
stride=1,
padding=1,
)
self.temp_conv_in = nn.Conv3d(
block_out_channels[0],
block_out_channels[0],
(3,1,1),
padding = (1, 0, 0)
)
self.mid_block = None
self.down_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i in range(num_blocks):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = DownEncoderBlock3D(
num_layers=self.layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=not is_final_block,
add_temp_downsample=blocks_temp_li[i],
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlock3DConv(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
)
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
conv_out_channels = 2 * out_channels if double_z else out_channels
self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3,1,1), padding = (1, 0, 0))
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
nn.init.zeros_(self.temp_conv_in.weight)
nn.init.zeros_(self.temp_conv_in.bias)
nn.init.zeros_(self.temp_conv_out.weight)
nn.init.zeros_(self.temp_conv_out.bias)
self.gradient_checkpointing = False
def forward(self, x):
'''
x: [b, c, (tb f), h, w]
'''
bz = x.shape[0]
sample = rearrange(x, 'b c n h w -> (b n) c h w')
sample = self.conv_in(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
temp_sample = sample
sample = self.temp_conv_in(sample)
sample = sample+temp_sample
# down
for b_id, down_block in enumerate(self.down_blocks):
sample = down_block(sample)
# middle
sample = self.mid_block(sample)
# post-process
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
temp_sample = sample
sample = self.temp_conv_out(sample)
sample = sample+temp_sample
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
sample = self.conv_out(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
return sample
class Decoder3D(nn.Module):
def __init__(
self,
in_channels=4,
out_channels=3,
num_blocks=4,
blocks_temp_li=[False, False, False, False],
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
norm_type="group", # group, spatial
):
super().__init__()
self.layers_per_block = layers_per_block
self.blocks_temp_li = blocks_temp_li
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[-1],
kernel_size=3,
stride=1,
padding=1,
)
self.temp_conv_in = nn.Conv3d(
block_out_channels[-1],
block_out_channels[-1],
(3,1,1),
padding = (1, 0, 0)
)
self.mid_block = None
self.up_blocks = nn.ModuleList([])
temb_channels = in_channels if norm_type == "spatial" else None
# mid
self.mid_block = UNetMidBlock3DConv(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i in range(num_blocks):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = UpDecoderBlock3D(
num_layers=self.layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
add_upsample=not is_final_block,
add_temp_upsample=blocks_temp_li[i],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
resnet_time_scale_shift=norm_type,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if norm_type == "spatial":
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
else:
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3,1,1), padding = (1, 0, 0))
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
nn.init.zeros_(self.temp_conv_in.weight)
nn.init.zeros_(self.temp_conv_in.bias)
nn.init.zeros_(self.temp_conv_out.weight)
nn.init.zeros_(self.temp_conv_out.bias)
self.gradient_checkpointing = False
def forward(self, z):
bz = z.shape[0]
sample = rearrange(z, 'b c n h w -> (b n) c h w')
sample = self.conv_in(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
temp_sample = sample
sample = self.temp_conv_in(sample)
sample = sample+temp_sample
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
# middle
sample = self.mid_block(sample)
sample = sample.to(upscale_dtype)
# up
for b_id, up_block in enumerate(self.up_blocks):
sample = up_block(sample)
# post-process
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
temp_sample = sample
sample = self.temp_conv_out(sample)
sample = sample+temp_sample
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
sample = self.conv_out(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
return sample
class AllegroAutoencoderKL3D(ModelMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `256`): Spatial Tiling Size.
tile_overlap (`tuple`, *optional*, defaults to `(120, 80`): Spatial overlapping size while tiling (height, width)
chunk_len (`int`, *optional*, defaults to `24`): Temporal Tiling Size.
t_over (`int`, *optional*, defaults to `8`): Temporal overlapping size while tiling
scaling_factor (`float`, *optional*, defaults to 0.13235):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
blocks_tempdown_li (`List`, *optional*, defaults to `[True, True, False, False]`): Each item indicates whether each TemporalBlock in the Encoder performs temporal downsampling.
blocks_tempup_li (`List`, *optional*, defaults to `[False, True, True, False]`): Each item indicates whether each TemporalBlock in the Decoder performs temporal upsampling.
load_mode (`str`, *optional*, defaults to `full`): Load mode for the model. Can be one of `full`, `encoder_only`, `decoder_only`. which corresponds to loading the full model state dicts, only the encoder state dicts, or only the decoder state dicts.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_num: int = 4,
up_block_num: int = 4,
block_out_channels: Tuple[int] = (128,256,512,512),
layers_per_block: int = 2,
act_fn: str = "silu",
latent_channels: int = 4,
norm_num_groups: int = 32,
sample_size: int = 320,
tile_overlap: tuple = (120, 80),
force_upcast: bool = True,
chunk_len: int = 24,
t_over: int = 8,
scale_factor: float = 0.13235,
blocks_tempdown_li=[True, True, False, False],
blocks_tempup_li=[False, True, True, False],
load_mode = 'full',
):
super().__init__()
self.blocks_tempdown_li = blocks_tempdown_li
self.blocks_tempup_li = blocks_tempup_li
# pass init params to Encoder
self.load_mode = load_mode
if load_mode in ['full', 'encoder_only']:
self.encoder = Encoder3D(
in_channels=in_channels,
out_channels=latent_channels,
num_blocks=down_block_num,
blocks_temp_li=blocks_tempdown_li,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=True,
)
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
if load_mode in ['full', 'decoder_only']:
# pass init params to Decoder
self.decoder = Decoder3D(
in_channels=latent_channels,
out_channels=out_channels,
num_blocks=up_block_num,
blocks_temp_li=blocks_tempup_li,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
)
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
# only relevant if vae tiling is enabled
sample_size = (
sample_size[0]
if isinstance(sample_size, (list, tuple))
else sample_size
)
self.tile_overlap = tile_overlap
self.vae_scale_factor=[4, 8, 8]
self.scale_factor = scale_factor
self.sample_size = sample_size
self.chunk_len = chunk_len
self.t_over = t_over
self.latent_chunk_len = self.chunk_len//4
self.latent_t_over = self.t_over//4
self.kernel = (self.chunk_len, self.sample_size, self.sample_size) #(24, 256, 256)
self.stride = (self.chunk_len - self.t_over, self.sample_size-self.tile_overlap[0], self.sample_size-self.tile_overlap[1]) # (16, 112, 192)
def encode(self, input_imgs: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
KERNEL = self.kernel
STRIDE = self.stride
LOCAL_BS = local_batch_size
OUT_C = 8
B, C, N, H, W = input_imgs.shape
out_n = math.floor((N - KERNEL[0]) / STRIDE[0]) + 1
out_h = math.floor((H - KERNEL[1]) / STRIDE[1]) + 1
out_w = math.floor((W - KERNEL[2]) / STRIDE[2]) + 1
## cut video into overlapped small cubes and batch forward
num = 0
out_latent = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8), device=input_imgs.device, dtype=input_imgs.dtype)
vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
for i in range(out_n):
for j in range(out_h):
for k in range(out_w):
n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
video_cube = input_imgs[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
vae_batch_input[num%LOCAL_BS] = video_cube
if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
latent = self.encoder(vae_batch_input)
if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
out_latent[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
else:
out_latent[num-LOCAL_BS+1:num+1] = latent
vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
num+=1
## flatten the batched out latent to videos and supress the overlapped parts
B, C, N, H, W = input_imgs.shape
out_video_cube = torch.zeros((B, OUT_C, N//4, H//8, W//8), device=input_imgs.device, dtype=input_imgs.dtype)
OUT_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
OUT_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
OVERLAP = OUT_KERNEL[0]-OUT_STRIDE[0], OUT_KERNEL[1]-OUT_STRIDE[1], OUT_KERNEL[2]-OUT_STRIDE[2]
for i in range(out_n):
n_start, n_end = i * OUT_STRIDE[0], i * OUT_STRIDE[0] + OUT_KERNEL[0]
for j in range(out_h):
h_start, h_end = j * OUT_STRIDE[1], j * OUT_STRIDE[1] + OUT_KERNEL[1]
for k in range(out_w):
w_start, w_end = k * OUT_STRIDE[2], k * OUT_STRIDE[2] + OUT_KERNEL[2]
latent_mean_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), out_latent[i*out_h*out_w+j*out_w+k].unsqueeze(0))
out_video_cube[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean_blend
## final conv
out_video_cube = rearrange(out_video_cube, 'b c n h w -> (b n) c h w')
out_video_cube = self.quant_conv(out_video_cube)
out_video_cube = rearrange(out_video_cube, '(b n) c h w -> b c n h w', b=B)
posterior = DiagonalGaussianDistribution(out_video_cube)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def decode(self, input_latents: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[DecoderOutput, torch.Tensor]:
KERNEL = self.kernel
STRIDE = self.stride
LOCAL_BS = local_batch_size
OUT_C = 3
IN_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
IN_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
B, C, N, H, W = input_latents.shape
## post quant conv (a mapping)
input_latents = rearrange(input_latents, 'b c n h w -> (b n) c h w')
input_latents = self.post_quant_conv(input_latents)
input_latents = rearrange(input_latents, '(b n) c h w -> b c n h w', b=B)
## out tensor shape
out_n = math.floor((N - IN_KERNEL[0]) / IN_STRIDE[0]) + 1
out_h = math.floor((H - IN_KERNEL[1]) / IN_STRIDE[1]) + 1
out_w = math.floor((W - IN_KERNEL[2]) / IN_STRIDE[2]) + 1
## cut latent into overlapped small cubes and batch forward
num = 0
decoded_cube = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
for i in range(out_n):
for j in range(out_h):
for k in range(out_w):
n_start, n_end = i * IN_STRIDE[0], i * IN_STRIDE[0] + IN_KERNEL[0]
h_start, h_end = j * IN_STRIDE[1], j * IN_STRIDE[1] + IN_KERNEL[1]
w_start, w_end = k * IN_STRIDE[2], k * IN_STRIDE[2] + IN_KERNEL[2]
latent_cube = input_latents[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
vae_batch_input[num%LOCAL_BS] = latent_cube
if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
latent = self.decoder(vae_batch_input)
if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
decoded_cube[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
else:
decoded_cube[num-LOCAL_BS+1:num+1] = latent
vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
num+=1
B, C, N, H, W = input_latents.shape
out_video = torch.zeros((B, OUT_C, N*4, H*8, W*8), device=input_latents.device, dtype=input_latents.dtype)
OVERLAP = KERNEL[0]-STRIDE[0], KERNEL[1]-STRIDE[1], KERNEL[2]-STRIDE[2]
for i in range(out_n):
n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
for j in range(out_h):
h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
for k in range(out_w):
w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
out_video_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), decoded_cube[i*out_h*out_w+j*out_w+k].unsqueeze(0))
out_video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend
out_video = rearrange(out_video, 'b c t h w -> b t c h w').contiguous()
decoded = out_video
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
encoder_local_batch_size: int = 2,
decoder_local_batch_size: int = 2,
) -> Union[DecoderOutput, torch.Tensor]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
generator (`torch.Generator`, *optional*):
PyTorch random number generator.
encoder_local_batch_size (`int`, *optional*, defaults to 2):
Local batch size for the encoder's batch inference.
decoder_local_batch_size (`int`, *optional*, defaults to 2):
Local batch size for the decoder's batch inference.
"""
x = sample
posterior = self.encode(x, local_batch_size=encoder_local_batch_size).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, local_batch_size=decoder_local_batch_size).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
kwargs["torch_type"] = torch.float32
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
def prepare_for_blend(n_param, h_param, w_param, x):
n, n_max, overlap_n = n_param
h, h_max, overlap_h = h_param
w, w_max, overlap_w = w_param
if overlap_n > 0:
if n > 0: # the head overlap part decays from 0 to 1
x[:,:,0:overlap_n,:,:] = x[:,:,0:overlap_n,:,:] * (torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
if n < n_max-1: # the tail overlap part decays from 1 to 0
x[:,:,-overlap_n:,:,:] = x[:,:,-overlap_n:,:,:] * (1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
if h > 0:
x[:,:,:,0:overlap_h,:] = x[:,:,:,0:overlap_h,:] * (torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
if h < h_max-1:
x[:,:,:,-overlap_h:,:] = x[:,:,:,-overlap_h:,:] * (1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
if w > 0:
x[:,:,:,:,0:overlap_w] = x[:,:,:,:,0:overlap_w] * (torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
if w < w_max-1:
x[:,:,:,:,-overlap_w:] = x[:,:,:,:,-overlap_w:] * (1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
return x
|